Fatty acid-induced cytotoxicity: Differences in susceptibility between mdck cells and primary cultures of proximal tubular cells

1997 ◽  
Vol 129 (2) ◽  
pp. 260-265 ◽  
Author(s):  
Wilfred Lieberthal ◽  
Alice M. Sheridan ◽  
John H. Schwartz
1989 ◽  
Vol 256 (3) ◽  
pp. C532-C539 ◽  
Author(s):  
M. J. Tang ◽  
K. R. Suresh ◽  
R. L. Tannen

Renal proximal tubular epithelia were used to assess the factors responsible for the induction of glycolysis in cultured cells. Primary cultures of rabbit proximal tubules, which achieved confluency at 6 days, exhibited hormonal responsiveness and brush-border characteristics typical of proximal tubular cells. Beginning at day 4, these cultured cells exhibited increased glycolytic metabolism reflected by enhanced glucose uptake and lactate production, along with parallel increases in activity of the glycolytic enzymes, pyruvate kinase and lactate dehydrogenase. The gluconeogenic enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and fructose-1,6-bisphosphatase (FDP), were downregulated, and the cultured cells exhibited lower oxygen consumption rates than fresh tubules. Cells grown on a rocker, to mitigate hypoxia, exhibited a metabolic and enzymatic profile similar to cells grown under still conditions. ATP levels in cultured cells were higher than in fresh tubules. Furthermore, pyruvate kinase activity was higher in cells grown in media containing 0.5 as contrasted with 25 mM glucose. The enhanced glycolytic metabolism exhibited by cultured proximal tubular cells appears to be a characteristic of proliferation and is not a response to hypoxia, the Pasteur effect, or environmental glucose.


Toxicology ◽  
2018 ◽  
Vol 404-405 ◽  
pp. 10-24 ◽  
Author(s):  
Lawrence H. Lash ◽  
Caroline A. Lee ◽  
Clynn Wilker ◽  
Vishal Shah

1993 ◽  
Vol 265 (3) ◽  
pp. F342-F350 ◽  
Author(s):  
A. M. Sheridan ◽  
J. H. Schwartz ◽  
V. M. Kroshian ◽  
A. M. Tercyak ◽  
J. Laraia ◽  
...  

To elucidate the mechanisms responsible for the resistance of continuous cell lines to anoxic injury, we have compared the effects of ATP depletion induced by chemical anoxia on primary cultures of mouse proximal tubular (MPT) cells and on Madin-Darby canine kidney (MDCK) cells. Inhibition of ATP production by cyanide and 2-deoxyglucose (CN+DOG) in the absence of dextrose reduced cell ATP content to < 5% of control values in MPT cells and caused progressive deterioration in mitochondrial function as well as loss of cell viability in these cells. Cell free fatty acid (FFA) content rose from 4.3 +/- 0.9 to 23.7 +/- 2.0 micrograms/mg of total lipid weight after 4 h of CN + DOG (P < 0.05). The mitochondrial injury and cell death induced by CN + DOG in MPT cells was ameliorated by the addition of fatty acid-free bovine albumin to the cell medium, which reduced cell FFA content during chemical anoxia from 25.0 +/- 3.0 to 10.4 +/- 2.0 micrograms/mg (P < 0.05). The phospholipase A2 (PLA2) inhibitor, mepacrine, also resulted in functional protection and reduction of cell FFA content from 20.2 +/- 2.3 to 15.9 +/- 1.7 micrograms/mg (P < 0.05). These data suggest a role for phospholipase activation and accumulation of toxic lipid metabolites in the pathophysiology of MPT cell injury. We then compared cell injury induced by CN + DOG in MPT and MDCK cells. Despite comparable reduction in cell ATP content in the two cell types, injury was far more severe in MPT than MDCK cells.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document