24 An in vitro study of the renal elimination process of cephaloridine and cefotaxime, on primary cultures of rabbit proximal tubular cells

1996 ◽  
Vol 12 (4-6) ◽  
pp. 378-378
Author(s):  
Isabelle Genestie ◽  
Jean-Paul Morin ◽  
Gerd Bode ◽  
Giocondo Lorenzon
2002 ◽  
Vol 76 (10) ◽  
pp. 581-588 ◽  
Author(s):  
Márcia Carvalho ◽  
Gabrielle Hawksworth ◽  
Nuno Milhazes ◽  
Fernanda Borges ◽  
Terrence Monks ◽  
...  

2014 ◽  
Vol 48 (2) ◽  
pp. 272-277 ◽  
Author(s):  
Luciana Barros de Moura Neiva ◽  
Fernanda Teixeira Borges ◽  
Mirian Watanabe ◽  
Edson de Andrade Pessoa ◽  
Dulce Aparecida Barbosa ◽  
...  

The aim of the study was to characterize the cell damage mechanisms involved in the pathophysiology of cytotoxicity of polymyxin B in proximal tubular cells (LLC - PK1) and discuss about the nurses interventions to identify at risk patients and consider prevention or treatment of nephrotoxicity acute kidney injury. This is a quantitative experimental in vitro study, in which the cells were exposed to 375μM polymyxin B sulfate concentration. Cell viability was determined by exclusion of fluorescent dyes and morphological method with visualization of apoptotic bodies for fluorescence microscopy. Cells exposed to polymyxin B showed reduced viability, increased number of apoptotic cells and a higher concentration of the enzyme lactate dehydrogenase. The administration of polymyxin B in vitro showed the need for actions to minimize adverse effects such as nephrotoxicity.



1989 ◽  
Vol 256 (3) ◽  
pp. C532-C539 ◽  
Author(s):  
M. J. Tang ◽  
K. R. Suresh ◽  
R. L. Tannen

Renal proximal tubular epithelia were used to assess the factors responsible for the induction of glycolysis in cultured cells. Primary cultures of rabbit proximal tubules, which achieved confluency at 6 days, exhibited hormonal responsiveness and brush-border characteristics typical of proximal tubular cells. Beginning at day 4, these cultured cells exhibited increased glycolytic metabolism reflected by enhanced glucose uptake and lactate production, along with parallel increases in activity of the glycolytic enzymes, pyruvate kinase and lactate dehydrogenase. The gluconeogenic enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and fructose-1,6-bisphosphatase (FDP), were downregulated, and the cultured cells exhibited lower oxygen consumption rates than fresh tubules. Cells grown on a rocker, to mitigate hypoxia, exhibited a metabolic and enzymatic profile similar to cells grown under still conditions. ATP levels in cultured cells were higher than in fresh tubules. Furthermore, pyruvate kinase activity was higher in cells grown in media containing 0.5 as contrasted with 25 mM glucose. The enhanced glycolytic metabolism exhibited by cultured proximal tubular cells appears to be a characteristic of proliferation and is not a response to hypoxia, the Pasteur effect, or environmental glucose.


2018 ◽  
Vol 315 (6) ◽  
pp. F1720-F1731 ◽  
Author(s):  
Lung-Chih Li ◽  
Jenq-Lin Yang ◽  
Wen-Chin Lee ◽  
Jin-Bor Chen ◽  
Chien-Te Lee ◽  
...  

High levels of serum free fatty acids (FFAs) and proteinuria have been implicated in the pathogenesis of obesity-related nephropathy. CD36, a class B scavenger receptor, is highly expressed in the renal proximal tubules and mediates FFA uptake. It is not clear whether FFA- and proteinuria-mediated CD36 activation coordinates NLRP3 inflammasomes to induce renal tubular injury and inflammation. In this study, we investigated the roles of CD36 and NLRP3 inflammasomes in FFA-induced renal injury in high-fat diet (HFD)-induced obesity. HFD-fed C57BL/6 mice and palmitate-treated HK2 renal tubular cells were used as in vivo and in vitro models. Immunohistochemical staining showed that CD36, IL-1β, and IL-18 levels increased progressively in the kidneys of HFD-fed mice. Sulfo- N-succinimidyl oleate (SSO), a CD36 inhibitor, attenuated the HFD-induced upregulation of NLRP3, IL-1β, and IL-18 and suppressed the colocalization of NLRP3 and ASC in renal tubular cells. In vitro, SSO abolished the palmitate-induced activation of IL-1β, IL-18, and caspase-1 in HK2 proximal tubular cells. Furthermore, treatment with SSO and the knockdown of caspase-1 expression by siRNA both inhibited palmitate-induced cell death and apoptosis in HK2 cells. Collectively, palmitate causes renal tubular inflammation, cell death, and apoptosis via the CD36/NLRP3/caspase-1 axis, which may explain, at least in part, the mechanism underlying FFA-related renal tubular injury. The blockade of CD36-induced cellular processes is therefore a promising strategy for treating obesity-related nephropathy.


Sign in / Sign up

Export Citation Format

Share Document