Inhibition of fatty acid oxidation and decrease of oxygen consumption of working rat heart by 4-bromocrotonic acid

1984 ◽  
Vol 16 (1) ◽  
pp. 105-108 ◽  
Author(s):  
J HUTTER ◽  
C SCHWEICKHARDT ◽  
H PIPER ◽  
P SPIECKERMANN
1964 ◽  
Vol 206 (6) ◽  
pp. 1217-1222 ◽  
Author(s):  
Irving B. Fritz

Carnitine increased oxidation of palmitate-1-C14 by rat heart and liver preparations, but decreased palmitate incorporation into glycerides. To determine which of the effects was derivative and which was primary, experiments were repeated using tissues whose rates of fatty acid oxidation had been depressed by Amytal poisoning. Under these conditions, carnitine inhibition of fatty acid conversion to glycerides was abolished. Similarly, low concentrations of carnitine were found to enhance palmitate oxidation without influencing palmitate esterification. Isolated liver microsomes which synthesized glycerides without oxidizing fatty acids showed no response to carnitine under all conditions tried. The inability of carnitine to alter glyceride formation in experiments described may signify that acyl-CoA generation from CoA and acylcarnitine is specifically directed toward the fatty acid oxidase system rather than to glyceride synthesis. It was also shown that, under conditions optimal for demonstration of carnitine augmentation of fatty acid oxidation by rat heart preparations, carnitine increased palmitate oxidation by a variety of other tissue homogenate preparations.


1973 ◽  
Vol 57 (1) ◽  
pp. 109-116 ◽  
Author(s):  
J. V. Anastasia ◽  
R. L. McCarl

This paper reports the determination of the ability of rat heart cells in culture to release [14C]palmitate from its triglyceride and to oxidize this fatty acid and free [14C]palmitate to 14CO2 when the cells are actively beating and when they stop beating after aging in culture. In addition, the levels of glucose, glycogen, and ATP were determined to relate the concentration of these metabolites with beating and with cessation of beating. When young rat heart cells in culture are actively beating, they oxidize free fatty acids at a rate parallel with cellular ATP production. Both fatty acid oxidation and ATP production remain constant while the cells continue to beat. Furthermore, glucose is removed from the growth medium by the cells and stored as glycogen. When cultured cells stop beating, a decrease is seen in their ability to oxidize free fatty acids and to release them from their corresponding triglycerides. Concomitant with decreased fatty acid oxidation is a decrease in cellular levels of ATP until beating ceases. Midway between initiation of cultures and cessation of beating the cells begin to mobilize the stored glycogen. When the growth medium is supplemented with cortisol acetate and given to cultures which have ceased to beat, reinitiation of beating occurs. Furthermore, all decreases previously observed in ATP levels, fatty acid oxidation, and esterase activity are restored.


2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Maysa M. Cruz ◽  
Andressa B. Lopes ◽  
Amanda R. Crisma ◽  
Roberta C. C. de Sá ◽  
Wilson M. T. Kuwabara ◽  
...  

2016 ◽  
Vol 310 (6) ◽  
pp. E452-E460 ◽  
Author(s):  
K. J. Mather ◽  
G. D. Hutchins ◽  
K. Perry ◽  
W. Territo ◽  
R. Chisholm ◽  
...  

Altered myocardial fuel selection likely underlies cardiac disease risk in diabetes, affecting oxygen demand and myocardial metabolic flexibility. We investigated myocardial fuel selection and metabolic flexibility in human type 2 diabetes mellitus (T2DM), using positron emission tomography to measure rates of myocardial fatty acid oxidation {16-[18F]fluoro-4-thia-palmitate (FTP)} and myocardial perfusion and total oxidation ([11C]acetate). Participants underwent paired studies under fasting conditions, comparing 3-h insulin + glucose euglycemic clamp conditions (120 mU·m−2·min−1) to 3-h saline infusion. Lean controls ( n = 10) were compared with glycemically controlled volunteers with T2DM ( n = 8). Insulin augmented heart rate, blood pressure, and stroke index in both groups (all P < 0.01) and significantly increased myocardial oxygen consumption ( P = 0.04) and perfusion ( P = 0.01) in both groups. Insulin suppressed available nonesterified fatty acids ( P < 0.0001), but fatty acid concentrations were higher in T2DM under both conditions ( P < 0.001). Insulin-induced suppression of fatty acid oxidation was seen in both groups ( P < 0.0001). However, fatty acid oxidation rates were higher under both conditions in T2DM ( P = 0.003). Myocardial work efficiency was lower in T2DM ( P = 0.006) and decreased in both groups with the insulin-induced increase in work and shift in fuel utilization ( P = 0.01). Augmented fatty acid oxidation is present under baseline and insulin-treated conditions in T2DM, with impaired insulin-induced shifts away from fatty acid oxidation. This is accompanied by reduced work efficiency, possibly due to greater oxygen consumption with fatty acid metabolism. These observations suggest that improved fatty acid suppression, or reductions in myocardial fatty acid uptake and retention, could be therapeutic targets to improve myocardial ischemia tolerance in T2DM.


Lipids ◽  
1976 ◽  
Vol 11 (9) ◽  
pp. 670-675 ◽  
Author(s):  
M. Galli Kienle ◽  
G. Cighetti ◽  
C. Spagnuolo ◽  
C. Galli

2009 ◽  
Vol 77 (6) ◽  
pp. 1096-1104 ◽  
Author(s):  
Yan-guang Cao ◽  
Lin Zhang ◽  
Chen Ma ◽  
Bo-bo Chang ◽  
Yuan-Cheng Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document