Comparison of the traffic performance of a two-axle four wheel drive (4WD), rear wheel drive (RWD), and front wheel drive (FWD) vehicle on loose sandy sloped terrain

1997 ◽  
Vol 34 (1) ◽  
pp. 37-55 ◽  
Author(s):  
Tatsuro Muro
2014 ◽  
Vol 1077 ◽  
pp. 185-190 ◽  
Author(s):  
Gourav Bansal ◽  
Shubham Chadha ◽  
Sheifali Gupta ◽  
Rupesh Gupta

This paper introduces the novice concept of “Eco-hybrid Two wheeler” which is a combination of two systems i.e. petrol and electric system. This hybrid vehicle will make use of both technologies. Petrol system will be used for rear wheel drive and the electric system for front wheel drive. The batteries will be automatically charged when the vehicle runs on petrol system and that stored power will further be used for running the vehicle on electric system and so running of vehicle on electric system will be free of cost and pollution free also. The most attractive thing is that the batteries can also be recharged from electric supply.


2013 ◽  
Vol 397-400 ◽  
pp. 388-392
Author(s):  
Chou Mo ◽  
Ji Qing Chen ◽  
Feng Chong Lan

The power system structure of a hybrid electric vehicle (HEV) critically affects the performance of the vehicle. This study presents a power-integrated transmission mechanism that can provide six basic operating modes that can be further classified into 15 sub-modes. Switching clutch conditions helps transmission achieve speed and torque coupling. The proposed mechanism has CVT capability and an extended range capacity, and it is applicable to front-wheel-drive, rear-wheel-drive, or four-wheel-drive HEVs. A performance simulation on power and economy via Matlab and Cruise software demonstrates that the performance of the proposed transmission mechanism meets the target. Therefore, the mechanism is a feasible candidate for use in HEVs.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1820
Author(s):  
Massimiliano Varani ◽  
Michele Mattetti ◽  
Mirko Maraldi ◽  
Giovanni Molari

Since the introduction of four-wheel drive (4WD) and especially front wheel assist (FWA), many studies have been conducted on the optimal weight distribution between tractor front and rear axles because this influences traction efficiency. The aim of this paper is to evaluate the traction and efficiency advantages in the adoption of mechanical ballast position adjustment devices. The tested device is an extendable ballast holder mounted on the front three-point hitch of the tractor, able to displace the ballast up to 1 m away from its original position. An estimation of the fuel consumption during ploughing with the extendable ballast holder in different configurations was performed. Tractive performance was evaluated through drawbar tests, performed on loam soil with a 4WD tractor having a maximum engine power of 191 kW and a ballasted mass of 9590 kg. Results show that changing the tractor weight distribution over the range allowed by the extendable ballast holder produces limited effects in terms of tractive performance and fuel saving. The adoption of such devices is thus ineffective if other fundamental factors such as tyre pressure, choice of the front-to-rear wheel combination and lead of the front wheels are not considered during tractor setup.


2014 ◽  
Vol 926-930 ◽  
pp. 896-900
Author(s):  
Jin Long Liu ◽  
Zhi Wei Gao ◽  
Jing Ming Zhang

The relations between Electric Vehicle (EV) drive arrangement and efficiency of regenerative braking were discussed. Firstly, conclusions were concluded according to the analyses of theoretical models. And then the validity of conclusions was proved by the simulations basing on the software of MATLAB/SIMULINK. The results indicate that the EV with four-wheel drive (4WD) pattern has the highest efficiency in regenerative braking mode. It also shows that whether the EV with front-wheel drive (FWD) pattern has higher efficiency than the EV with rear-wheel drive (RWD) pattern in regenerative braking mode depends on the braking force distribution coefficient.


2001 ◽  
Author(s):  
Junghsen Lieh

Abstract Conventional approach for vehicle traction and propulsion analysis used spreadsheets. This is inconvenient if one intends to vary a parameter, and it is even more difficult when multiple parameters are evaluated at the design phase. In this paper, it is intended to formulate two nonlinear differential equations representing road load and power consumption. By expanding inertia force, air drag, rolling resistance, gravitational force and tire tractive force, the equations can be simplified as the function of velocity v, i.e., s 1 v ˙ = s 2 - s 3 v 2 and m v ˙ = - r 1 v 3 - r 2 v + r 3 v , respectively. With these two equations, it allows engineers to use either numerical or analytical method to study key parameters at the design phase. To demonstrate the effectiveness of these equations, Wright State’s electric car model is used. The results for front-wheel drive (FWD), rear-wheel drive (RWD) and four-wheel drive (4WD) cases are presented.


2005 ◽  
Vol 1 (1) ◽  
pp. 7-31 ◽  
Author(s):  
Márk Szente

The objective of the research of tires was to determine the dynamic rolling radius and to apply it to wheel slip calculations with special respect to vertical wheel load and to tire inflation pressure. It is typical of mechanical four-wheel drive tractors that there is a definite additional power in the tractor power chain. This additional power is dependent on the difference between the front wheel and rear wheel peripheral speeds. Further-more, the purpose was to determine the effect of additional slip on four-wheel drive tractors operated without drawbar pull. Experiments were performed on asphalt surfaces and fields. A new measurement method was developed, and a device was constructed for the implementation of three tractor wheel drive operational modes (four-wheel drive, rear-wheel drive and front-wheel drive). As the result of the experiments, a relationship was found to describe the dynamic rolling radius for low-profile radial tires tested on rigid road surfaces. On this basis, the classical slip calculation method was modified. This phenomenon appears only on hard roads and soil surfaces with high adhesion coefficients and only within the low drawbar pull range.


Sign in / Sign up

Export Citation Format

Share Document