Sequence deduced physical properties in the D-loop region common to five vertebrate mitochondrial DNAs

1987 ◽  
Vol 124 (1) ◽  
pp. 57-69 ◽  
Author(s):  
Bernard Mignotte ◽  
Dominique Dunon-Bluteau ◽  
Claude Reiss ◽  
Jean-Claude Mounolou
Genetics ◽  
1983 ◽  
Vol 104 (4) ◽  
pp. 699-711
Author(s):  
R L Cann ◽  
A C Wilson

ABSTRACT By high-resolution, restriction mapping of mitochondrial DNAs purified from 112 human individuals, we have identified 14 length variants caused by small additions and deletions (from about 6 to 14 base pairs in length). Three of the 14 length differences are due to mutations at two locations within the D loop, whereas the remaining 11 occur at seven sites that are probably within other noncoding sequences and at junctions between coding sequences. In five of the nine regions of length polymorphism, there is a sequence of five cytosines in a row, this sequence being comparatively rare in coding DNA. Phylogenetic analysis indicates that, in most of the polymorphic regions, a given length mutation has arisen several times independently in different human lineages. The average rate at which length mutations have been arising and surviving in the human species is estimated to be many times higher for noncoding mtDNA than for noncoding nuclear DNA. The mystery of why vertebrate mtDNA is more prone than nuclear DNA to evolve by point mutation is now compounded by the discovery of a similar bias toward rapid evolution by length mutation.


2021 ◽  
Vol 22 (9) ◽  
pp. 4594
Author(s):  
Andrea Stoccoro ◽  
Fabio Coppedè

Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.


2014 ◽  
Vol 76 (11) ◽  
pp. 1451-1456 ◽  
Author(s):  
Masaki TAKASU ◽  
Namiko ISHIHARA ◽  
Teruaki TOZAKI ◽  
Hironaga KAKOI ◽  
Masami MAEDA ◽  
...  

1993 ◽  
Vol 13 (4) ◽  
pp. 2162-2171 ◽  
Author(s):  
C S Madsen ◽  
S C Ghivizzani ◽  
W W Hauswirth

A methylation protection assay was used in a novel manner to demonstrate a specific bovine protein-mitochondrial DNA (mtDNA) interaction within the organelle (in organello). The protected domain, located near the D-loop 3' end, encompasses a conserved termination-associated sequence (TAS) element which is thought to be involved in the regulation of mtDNA synthesis. In vitro footprinting studies using a bovine mitochondrial extract and a series of deleted mtDNA templates identified a approximately 48-kDa protein which binds specifically to a single TAS element also protected within the mitochondrion. Because other TAS-like elements located in close proximity to the protected region did not footprint, protein binding appears to be highly sequence specific. The in organello and in vitro data, together, provide evidence that D-loop formation is likely to be mediated, at least in part, through a trans-acting factor binding to a conserved sequence element located 58 bp upstream of the D-loop 3' end.


2007 ◽  
Vol 176 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Jiuya He ◽  
Chih-Chieh Mao ◽  
Aurelio Reyes ◽  
Hiroshi Sembongi ◽  
Miriam Di Re ◽  
...  

Many copies of mammalian mitochondrial DNA contain a short triple-stranded region, or displacement loop (D-loop), in the major noncoding region. In the 35 years since their discovery, no function has been assigned to mitochondrial D-loops. We purified mitochondrial nucleoprotein complexes from rat liver and identified a previously uncharacterized protein, ATAD3p. Localization studies suggested that human ATAD3 is a component of many, but not all, mitochondrial nucleoids. Gene silencing of ATAD3 by RNA interference altered the structure of mitochondrial nucleoids and led to the dissociation of mitochondrial DNA fragments held together by protein, specifically, ones containing the D-loop region. In vitro, a recombinant fragment of ATAD3p bound to supercoiled DNA molecules that contained a synthetic D-loop, with a marked preference over partially relaxed molecules with a D-loop or supercoiled DNA circles. These results suggest that mitochondrial D-loops serve to recruit ATAD3p for the purpose of forming or segregating mitochondrial nucleoids.


1999 ◽  
Vol 65 (6) ◽  
pp. 1005-1009 ◽  
Author(s):  
Tomoki Ohnaka ◽  
Hiroyuki Sasaki ◽  
Kensho Nagai ◽  
Kenichi Numachi

Sign in / Sign up

Export Citation Format

Share Document