A novel single-input multiple-output current-mode current-controlled universal filter

1998 ◽  
Vol 29 (11) ◽  
pp. 901-905 ◽  
Author(s):  
Muhammad Taher Abuelma'atti ◽  
Noman Ali Tasadduq
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3009
Author(s):  
Mohammad Tahan ◽  
David O. Bamgboje ◽  
Tingshu Hu

A new single-input multiple-output (SIMO) converter is proposed in this work by incorporating flyback and buck converters in a master–slave configuration. The objective of this work is to address the cross regulation problem, achieve tight voltage regulation, improve the circuit form factor and attain a fast transient response for a SIMO flyback converter. The flyback converter maintains the output channels within 10% of their rated voltages and the SIMO buck converter is placed in series with the flyback converter such that it compensates for the output voltage deviation. Moreover, a time multiplexing switching scheme decouples output channel to eliminate the cross-regulation problem and remove the need for an additional winding transformer per each output channel. A type II compensator with a peak current mode controller was designed to achieve faster transient response which is critical for the proposed configuration. A thorough steady-state analysis was carried out on a triple output channel topology to obtain the design criteria and component values. MATLAB/Simscape modelling and simulation was used to validate the effectiveness of the proposed converter with the result yielding satisfactory transience even with load disturbance. Additionally, the result of the proposed converter is compared with previously published works.


2014 ◽  
Vol 23 (09) ◽  
pp. 1450123 ◽  
Author(s):  
HALIL ALPASLAN ◽  
ERKAN YUCE

In this paper, a new two-input three-output second-order universal filter is proposed. Two multi-output voltage controlled current followers (MO-VCCFs) and two capacitors are used in the proposed filter. The proposed filter does not have external passive resistors. It has high output impedances yielding easy cascadability. It has the property of electronic tunability. It does not need any critical passive component matching conditions. Also, it is composed of only grounded capacitors; accordingly, it is suitable for integration. Theoretical knowledge is supported via SPICE simulations.


Sign in / Sign up

Export Citation Format

Share Document