Purification and characterization of mannitol dehydrogenase and identification of the corresponding cDNA from the head blight fungus, Gibberella zeae (Fusarium graminearum)

2002 ◽  
Vol 61 (7) ◽  
pp. 791-796 ◽  
Author(s):  
Frances Trail ◽  
Haixin Xu
Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1458-1464 ◽  
Author(s):  
Melissa D. Keller ◽  
Wade E. Thomason ◽  
David G. Schmale

Corn residue is a significant source of inoculum for epidemics of Fusarium head blight (FHB) in wheat and barley, but little is known about the influence of different amounts of corn residue on FHB. We monitored the spread of a released clone of Gibberella zeae (Fusarium graminearum), causal agent of FHB, from small 0.84-m-diameter research plots containing 45, 200, or 410 g of infested corn stalk pieces in winter wheat and barley fields in Virginia over 3 years (2008 to 2010). The fungus was recaptured through the collection of wheat and barley spikes at 0 and 3 m from the source and the released clone was identified in heterogeneous background populations using amplified fragment length polymorphisms. Results showed a slightly greater intensity of recovery of the clone at a greater distance when more infested residue was present. Plots containing larger amounts of inoculum (410 g) generally resulted in a smaller decline of recovery of the clone at 3 m from the source, indicating a greater spread from the larger inoculum source. The clone was also recovered at distances ≥18 m from inoculum sources. Larger amounts of corn residue generally had less influence on clone recovery in plots containing a moderately resistant wheat cultivar than those containing a susceptible wheat cultivar.


2016 ◽  
Vol 123 (4) ◽  
pp. 177-186 ◽  
Author(s):  
Emre Yörük ◽  
Berna Tunali ◽  
Bayram Kansu ◽  
Fatih Ölmez ◽  
Gülşen Uz ◽  
...  

mBio ◽  
2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yi Lou ◽  
Jing Zhang ◽  
Guanghui Wang ◽  
Wenqin Fang ◽  
Shumin Wang ◽  
...  

Fusarium head blight (FHB), caused predominantly by Fusarium graminearum , is an economically devastating disease of a wide range of cereal crops. Our previous study identified F. graminearum Vps17, Vps5, Snx41, and Snx4 as PX domain-containing proteins that were involved in membrane trafficking mediating the fungal development and pathogenicity, but the identity and biological roles of the remaining members of this protein family remain unknown in this model phytopathogen.


2017 ◽  
Vol 19 (3) ◽  
pp. 715-730 ◽  
Author(s):  
Yoonji Lee ◽  
Hokyoung Son ◽  
Ji Young Shin ◽  
Gyung Ja Choi ◽  
Yin-Won Lee

Plant Disease ◽  
2006 ◽  
Vol 90 (5) ◽  
pp. 637-644 ◽  
Author(s):  
N. S. Dufault ◽  
E. D. De Wolf ◽  
P. E. Lipps ◽  
L. V. Madden

Fusarium graminearum (teleomorph Gibberella zeae) is the most common pathogen of Fusarium head blight (FHB) in North America. Ascospores released from the perithecia of G. zeae are a major source of inoculum for FHB. The influence of temperature and moisture on perithecial production and development was evaluated by monitoring autoclaved inoculated cornstalk sections in controlled environments. Perithecial development was assessed at all combinations of five temperatures (12, 16, 20, 24, and 28°C) and four moisture levels with means (range) -0.45 (-0.18, -1.16), -1.30 (-0.81, -1.68), -2.36 (-1.34, -3.53) and -4.02 (-2.39, -5.88) MPa. Moisture levels of -0.45 and -1.30 MPa and temperatures from 16 to 24°C promoted perithecial production and development. Temperatures of 12 and 28°C and moisture levels of -2.36 and -4.02 MPa either slowed or limited perithecial production and development. The water potential of -1.30 MPa had mature perithecia after 10 days at 20°C, but not until after 15 days for 24°C. In contrast, few perithecia achieved maturity and produced ascospores at lower moisture levels (-2.36 and -4.02 MPa) and low (12°C) and high (28°C) temperatures. In the future, it may be possible to use the information gathered in these experiments to improve the accuracy of FHB forecasting systems.


2008 ◽  
Vol 88 (6) ◽  
pp. 1115-1125 ◽  
Author(s):  
F. Eudes ◽  
A. Comeau ◽  
S. Rioux ◽  
J. Collin

Trichothecene, a factor of aggressiveness of Fusarium graminearum in wheat fusarium head blight (FHB), was evaluated in an anther co-culture assay for the regeneration of doubled haploid (DH) lines with reduced mycotoxin accumulation. A Fusarium graminearum culture filtrate and a defined mixture of purified trichothecenes were compared with a control treatment in two F1-derived microspores populations. Frontana and Katepwa were the FHB resistant and intermediate resistant sources, respectively, and the cultivar Norseman was the FHB susceptible parent. A preliminary evaluation of the subpopulations of DH lines, using the point inoculation method in the greenhouse, showed selection effects for FHB resistance in the trichothecene co-cultured Frontana/Norseman subpopulation only. Three years of field evaluation using the spray inoculation method revealed that the DH subpopulation from the F1 hybrid Frontana/Norseman co-culture in the presence of trichothecenes accumulated consistently less deoxynivalenol (DON) in the grain than the control subpopulation. The FHB symptoms were also significantly reduced for 1 yr (2001) in the same subpopulation. This subpopulation showed increased test weight, plant height and a 1.1-d delay in heading date when compared with the control subpopulation, under disease pressure. A trichothecene co-cultured DH subpopulation from Katepwa/Norseman also had a significantly lower DON content for 1 yr. Key words: Androgenesis, disease resistance, Gibberella zeae, mycotoxin, Triticum aestivum, wheat scab


Genome ◽  
2012 ◽  
Vol 55 (12) ◽  
pp. 853-864 ◽  
Author(s):  
Yuefeng Ruan ◽  
André Comeau ◽  
François Langevin ◽  
Pierre Hucl ◽  
John M. Clarke ◽  
...  

Most tetraploid durum wheat (Triticum turgidum L var. durum) cultivars are susceptible to Fusarium head blight (FHB). This study reports novel quantitative trait loci (QTL) associated with FHB resistance. A backcross recombinant inbred line (BCRIL) population was developed from the cross BGRC3487/2*DT735, and 160 lines were evaluated for resistance to Fusarium graminearum Schwabe (teleomorph Gibberella zeae (Schwein. Petch) in field trials over 3 years (2008–2010) and to a F. graminearum 3-acetyl-deoxynivalenol (3-ADON) chemotype in greenhouse trials. The population was genotyped with 948 polymorphic loci using DArT and microsatellite markers. Eleven QTL were associated with FHB resistance under field conditions on chromosomes 2A, 3B, 5A, 5B, 7A, and 7B. Two of these, QFhb.usw-3B from BGRC3487 and QFhb.usw-7A2, were consistently detected over environments. The QFhb.usw-3B QTL was in a similar position to a resistance QTL in hexaploid wheat. The combination of the two QTL reduced field index by 53.5%–86.2%. Two QTL for resistance to the 3-ADON chemotype were detected on chromosomes 1B and 4B. Both BGRC3487 and DT735 could provide new sources of FHB resistance and the combination of QTL reported here could be valuable tools in breeding FHB-resistant durum wheat.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 320
Author(s):  
Guixia Hao ◽  
Susan McCormick ◽  
Helene Tiley ◽  
Thomas Usgaard

Fusarium graminearum, the causal agent of Fusarium head blight (FHB), produces trichothecenes including deoxynivalenol (DON), nivalenol (NIV), and 3,7,15-trihydroxy-12,13-epoxytrichothec-9-ene (NX-3). These toxins contaminate grains and cause profound health problems in humans and animals. To explore exploiting a fungal self-protection mechanism in plants, we examined the ability of F. graminearum trichothecene 3-O-acetyltransferase (FgTri101) to detoxify several key trichothecenes produced by F. graminearum: DON, 15-ADON, NX-3, and NIV. FgTri101 was cloned from F. graminearum and expressed in Arabidopsis plants. We compared the phytotoxic effects of purified DON, NIV, and NX-3 on the root growth of transgenic Arabidopsis expressing FgTri101. Compared to wild type and GUS controls, FgTri101 transgenic Arabidopsis plants displayed significantly longer root length on media containing DON and NX-3. Furthermore, we confirmed that the FgTri101 transgenic plants acetylated DON to 3-ADON, 15-ADON to 3,15-diADON, and NX-3 to NX-2, but did not acetylate NIV. Approximately 90% of the converted toxins were excreted into the media. Our study indicates that transgenic Arabidopsis expressing FgTri101 can provide plant protection by detoxifying trichothecenes and excreting the acetylated toxins out of plant cells. Characterization of plant transporters involved in trichothecene efflux will provide novel targets to reduce FHB and mycotoxin contamination in economically important plant crops.


Sign in / Sign up

Export Citation Format

Share Document