The graft-versus-leukemia effect in allogeneic irradiation bone marrow chimeras: possible suppressive role of irradiation-induced TGF-β

2001 ◽  
Vol 33 (1-2) ◽  
pp. 336-337 ◽  
Author(s):  
A.D Billiau ◽  
H Sefrioui ◽  
L Overbergh ◽  
O Rutgeerts ◽  
J Goebels ◽  
...  
1993 ◽  
Vol 56 (1) ◽  
pp. 31-36 ◽  
Author(s):  
BISHAN S. CHARAK ◽  
RUSSELL K. BRYNES ◽  
MARILYN CHOGYOJI ◽  
VIRGINIA KORTES ◽  
MARIELLA TEFFT ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2319-2319
Author(s):  
Teerawit Supakorndej ◽  
Mahil Rao ◽  
Daniel Link

Abstract Abstract 2319 Granulocyte-colony stimulating factor (G-CSF) is the prototypic agent used to mobilize hematopoietic stem and progenitor cells (HSPCs) into the blood where they can then be harvested for stem cell transplantation. G-CSF acts in a non-cell-intrinsic fashion to induce HSPC mobilization. We recently showed that G-CSF signaling in a CD68+ monocyte/macrophage lineage cell within the bone marrow initiates the HSPC mobilization cascade (Christopher et al., 2011). Consistent with this finding, two other groups showed that ablation of monocytes/macrophages induces HSPC mobilization (Winkler et al., 2010; Chow et al., 2011). CD68 marks a heterogeneous cell population that includes monocytes, macrophages, myeloid dendritic cells, and osteoclasts. To further define the relevant cell population(s) for HSPC mobilization by G-CSF, we first examined the role of osteoclasts. Receptor activator of NF-kappaB (RANK) signaling is required for osteoclast development. Osteoprotegerin (OPG) is a decoy receptor for RANK ligand, and treatment with OPG-Fc (a stabilized form of OPG) results in osteoclast ablation in mice. We treated mice with 100 μg of OPG-Fc and documented complete osteoclast ablation by histomorphometry. Osteoclast ablation did not result in constitutive HSPC mobilization, nor did it affect G-CSF-induced HSPC mobilization. To further assess the role of osteoclasts, we transplanted RANK−/− fetal liver cells into irradiated Csf3r−/− (G-CSF receptor deficient) recipients. Since RANK is required for osteoclast development, the osteoclasts in these bone marrow chimeras lack the G-CSFR, while other hematopoietic cells (including monocytes/macrophages) are G-CSFR sufficient. Again, G-CSF-induced HSPC mobilization in these mice was normal. Based on these data, we conclude that osteoclasts are dispensable for HSPC mobilization by G-CSF. We next quantified changes in monocytic/macrophage cell populations in the bone marrow after G-CSF treatment (250 μg/kg per day for 5 days) using a novel multi-color flow cytometry assay that includes CD115, F4/80, MHC class II, Gr-1, B220, and CD11c. Using this assay, we observed a significant decrease in macrophages (11.8 ± 3.6-fold) and, surprisingly, myeloid dendritic cells (MDCs; 5.5 ± 1.2-fold) in the bone marrow with G-CSF treatment. To further assess the role of MDCs, we used transgenic mice expressing the diphtheria toxin receptor under the control of the CD11c promoter (CD11c-DTR) to conditionally ablate MDCs. To avoid systemic toxicity, we transplanted CD11c-DTR bone marrow into congenic wild type recipients prior to MDC ablation. The resulting bone marrow chimeras were treated with diphtheria toxin (DT; 400 ng per day for 6 days), which resulted in a 92% reduction in MDCs. Ablation of MDCs resulted in a significant increase in colony-forming cells in the blood and spleen (figure 1A). Moreover, MDC ablation significantly increased mobilization of colony-forming cells and c-Kit+lineage−Sca-1+ (KLS) cells by G-CSF (figures 1B and 1C). Taken together, these data suggest that myeloid dendritic cells, but not osteoclasts, contribute to HSPC mobilization by G-CSF. Figure 1. HSPC mobilization in CD11c-DTR mice. CD11c-DTR bone marrow chimeras were treated with diphtheria toxin (DT) alone, G-CSF alone, or DT plus G-CSF. The number of CFU-C (A & B) or KLS cells (C) in the blood and spleen are shown. Data represent the mean ± SEM of 10–11 mice pooled from two independent experiments. *p < 0.05; **p < 0.001; ***p < 0.0001. Figure 1. HSPC mobilization in CD11c-DTR mice. CD11c-DTR bone marrow chimeras were treated with diphtheria toxin (DT) alone, G-CSF alone, or DT plus G-CSF. The number of CFU-C (A & B) or KLS cells (C) in the blood and spleen are shown. Data represent the mean ± SEM of 10–11 mice pooled from two independent experiments. *p < 0.05; **p < 0.001; ***p < 0.0001. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 314 (6) ◽  
pp. L1010-L1025 ◽  
Author(s):  
Remo C. Russo ◽  
Benedetta Savino ◽  
Massimiliano Mirolo ◽  
Chiara Buracchi ◽  
Giovanni Germano ◽  
...  

Chemokines coordinate lung inflammation and fibrosis by acting on chemokine receptors expressed on leukocytes and other cell types. Atypical chemokine receptors (ACKRs) bind, internalize, and degrade chemokines, tuning homeostasis and immune responses. ACKR2 recognizes and decreases the levels of inflammatory CC chemokines. The role of ACKR2 in fibrogenesis is unknown. The purpose of the study was to investigate the role of ACKR2 in the context of pulmonary fibrosis. The effects of ACKR2 expression and deficiency during inflammation and fibrosis were analyzed using a bleomycin-model of fibrosis, ACKR2-deficient mice, bone marrow chimeras, and antibody-mediated leukocyte depletion. ACKR2 was upregulated acutely in response to bleomycin and normalized over time. ACKR2−/− mice showed reduced lethality and lung fibrosis. Bone marrow chimeras showed that lethality and fibrosis depended on ACKR2 expression in pulmonary resident (nonhematopoietic) cells but not on leukocytes. ACKR2−/− mice exhibited decreased expression of tissue-remodeling genes, reduced leukocyte influx, pulmonary injury, and dysfunction. ACKR2−/− mice had early increased levels of CCL5, CCL12, CCL17, and IFNγ and an increased number of CCR2+ and CCR5+ IFNγ-producing γδT cells in the airways counterbalanced by low Th17-lymphocyte influx. There was reduced accumulation of IFNγ-producing γδT cells in CCR2−/− and CCR5−/− mice. Moreover, depletion of γδT cells worsened the clinical symptoms induced by bleomycin and reversed the phenotype of ACKR2−/− mice exposed to bleomycin. ACKR2 controls the CC chemokine expression that drives the influx of CCR2+ and CCR5+ IFNγ-producing γδT cells, tuning the Th17 response that mediated pulmonary fibrosis triggered by bleomycin instillation.


Biometrics ◽  
1999 ◽  
Vol 55 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Niels Keiding ◽  
Marusca Filiberti ◽  
Sille Esbjerg ◽  
James M. Robins ◽  
Niels Jacobsen

1978 ◽  
Vol 147 (3) ◽  
pp. 882-896 ◽  
Author(s):  
R M Zinkernagel ◽  
G N Callahan ◽  
A Althage ◽  
S Cooper ◽  
P A Klein ◽  
...  

In the thymus, precursor T cells differentiate recognition structures for self that are specific for the H-2K, D, and I markers expressed by the thymic epithelium. Thus recognition of self-H-2 differentiates independently of the T cells H-2 type and independently of recognition of nonself antigen X. This is readily compatible with dual recognition by T cells but does not formally exclude a single recognition model. These conclusions derive from experiments with bone marrow and thymic chimeras. Irradiated mice reconstituted with bone marrow to form chimeras of (A X B)F1 leads to A type generate virus-specific cytotoxic T cells for infected targets A only. Therefore, the H-2 type of the host determines the H-2-restricted activity of killer T cells alone. In contrast, chimeras made by reconstituting irradiated A mice with adult spleen cells of (A X B)F1 origin generate virus-specific cytotoxic activity for infected A and B targets, suggesting that mature T cells do not change their self-specificity readily. (A X B)F1 leads to (A X C)F1 and (KAIA/DC) leads to (KAIA/DB) irradiation bone marrow chimeras responded against infected A but not B or C targets. This suggests that cytotoxicity is not generated against DC because it is abscent from the host's thymus epithelium and not against DB because it is not expressed by the reconstituting lymphoreticular system. (KBIB/DA) leads to (KCIC/DA) K, I incompatible, or completely H-2 incompatible A leads to B chimeras fail to generate any measurable virus specific cytotoxicity, indicating the necessity for I-specific helper T cells for the generation of killer T cells. Finally adult thymectomized, irradiated and bone marrow reconstituted (A X B)F1 mice, transplanted with an irradiated thymus of A origin, generate virus-specific cytotoxic T cells specific for infected A targets but not for B targets; this result formally demonstrates the crucial role of thymic epithelial cells in the differentiation of anti-self-H-2 specificities of T cells.


Sign in / Sign up

Export Citation Format

Share Document