The influence of ring crack location on the rolling contact fatigue failure of lubricated silicon nitride: experimental studies

Wear ◽  
2000 ◽  
Vol 243 (1-2) ◽  
pp. 157-166 ◽  
Author(s):  
Y Wang ◽  
M Hadfield
2016 ◽  
Vol 250 ◽  
pp. 43-49 ◽  
Author(s):  
Waldemar Karaszewski

The properties of ceramics, specifically low density, high hardness, high temperature capability and low coefficient of thermal expansion are of most interest to rolling element manufacturers. Surface ring cracks on lubricating rolling contact fatigue failure has been studied using numerical fracture analysis. Such cracks are very often found on ceramic bearing balls and decrease fatigue life rapidly. The numerical calculations are based on a three-dimensional model of the ring crack. The stress intensity factors along crack front are analyzed using a finite element analysis. The numerical analysis is verified by experimental studies.


2011 ◽  
Vol 217-218 ◽  
pp. 866-873 ◽  
Author(s):  
Katsuyuki Kida

Previous researchers investigated the failures of ball surfaces of silicon nitride bearings from the viewpoint of the ring crack model. They explained the process of flaking failures in terms of surface semi-circular cracks which grew by the stresses around the circumference of the contact circle. However, contrary to their explanation, we found that the ring crack model did not explain the process of the flaking failure of plates. In the present work we compare the growth directions of surface and subsurface cracks in order to find out which crack is more dominant in the process of the flaking failure. We carried out reciprocating-rolling contact fatigue (RCF) tests and concluded that the directions of arcs formed by the semi-circular surface cracks were dominated by subsurface crack growth direction.


2014 ◽  
Vol 598 ◽  
pp. 92-98 ◽  
Author(s):  
Waldemar Karaszewski

The properties of ceramics, specifically low density, high hardness, high temperature capability and low coefficient of thermal expansion are of most interest to rolling element manufacturers. The influence of ring crack size on rolling contact fatigue failure has been studied using numerical fracture analysis. Such cracks are very often found on ceramic bearing balls and decrease fatigue life rapidly. The numerical calculation are based on a three dimensional model for the ring crack propagation. The stress intensity factors along crack front are analyzed using a three-dimensional boundary element model. The numerical analysis is verified by experimental studies.


Author(s):  
John W. Lucek

Rolling-contact fatigue test methods were used to measure the wear performance of several silicon nitride materials. Sintered, hot pressed and hot isostatically pressed materials exhibited wear rates ranging over three orders of magnitude. Hot isostatically pressed materials had the lowest wear rates. Despite the disparity in wear performance, all materials tested had useful rolling-contact fatigue lives compared to steel. Fatigue life estimates, failure modes, and rolling wear performance for theses ceramics are compared to M-50 steel. This work highlights the rapid contact stress reductions that occur due to conformal wear in rolling-contact fatigue testing. Candidate bearing materials with unacceptably high wear rates may exhibit useful fatigue lives. Rolling contact bearing materials must possess useful wear and fatigue resistance. Proper performance screening of candidate bearing materials must describe the failure mode, wear rate, and the fatigue life. Guidelines for fatigue testing methods are proposed.


Author(s):  
Gerald E. Arnold

Ball or roller bearings have much in common with a railway wheel running on a rail. Both have high Hertzian stresses and are subject to rolling contact fatigue. Silicone Nitride (Si3N4), a Technical Ceramic, has now firmly established itself in the engineering marketplace as part of a hybrid bearing, where the rolling elements are silicone nitride and the races are steel. The paper explores the possibility of a Silicon Nitride/steel wheel/rail combination and finds that, because Silicon Nitride has a higher Modulus of Elasticity, it is not suitable as a direct replacement on existing systems, because it would produce a smaller contact patch and greater contact stress. The low toughness of Silicon Nitride in comparison to steel could be an obstacle to its general railway use, however, it could made into a composite material in the same manner as Carbon Reinforced Silicon Carbide (C/SiC) is used in brake discs. There is a possibility that, under the right conditions, Silicon Nitride could return very low wear rates, because of its extreme hardness, and because it’s excellent resistance to rolling contact fatigue (noted in hybrid bearings). This could give a wheel high mileage, without the need to remove fatigued material by controlled wear or by turning. A promising future application for the material is a cable-hauled system, where the predicted lower adhesion between Silicon Nitride and a steel rail is not a problem and the wheels are not required to be conductive.


Sign in / Sign up

Export Citation Format

Share Document