Cestode parasites: Application of in vivo and in vitro models for studies on the host-parasite relationship

Author(s):  
M SILESLUCAS ◽  
A HEMPHILL
Parasitology ◽  
1989 ◽  
Vol 99 (3) ◽  
pp. 317-322 ◽  
Author(s):  
F. Peyron ◽  
B. Polack ◽  
D. Lamotte ◽  
L. Kolodie ◽  
P. Ambroise-Thomas

SummaryPlatelets take an active part in immunological processes as well as in haemostasis, especially in the host-parasite relationship. Our aim is to assess the growth ofPlasmodium falciparum, cultured in human erythrocytes in the presence of fresh washed human platelets, since thrombocytopaenia is frequently observed during malarial infections. Our results show that platelets induce a dose-related growth inhibition ofP. falciparum. Both proliferation and maturation of intraerythrocytic stages of the parasite are inhibited. This growth inhibition is triggered by the parasite itself as neither specific antibodies nor any other components are needed to activate platelets. Activated platelets are directly toxic since complement is not involved. Furthermore, inhibition is not mediated by erythrocyte lysis or by toxic oxygen metabolites. Platelets induce an inhibition ofP.falciparumgrowth, at leastin vitro, although the importance of their role playedin vivoin malarial immunity has yet to be evaluated.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Alessandra Siracusano ◽  
Federica Delunardo ◽  
Antonella Teggi ◽  
Elena Ortona

The larval stage ofEchinococcus granulosuscauses cystic echinococcosis, a neglected infectious disease that constitutes a major public health problem in developing countries. Despite being under constant barrage by the immune system,E. granulosusmodulates antiparasite immune responses and persists in the human hosts with detectable humoral and cellular responses against the parasite.In vitroandin vivoimmunological approaches, together with molecular biology and immunoproteomic technologies, provided us exciting insights into the mechanisms involved in the initiation ofE. granulosusinfection and the consequent induction and regulation of the immune response. Although the last decade has clarified many aspects of host-parasite relationship in human cystic echinococcosis, establishing the full mechanisms that cause the disease requires more studies. Here, we review some of the recent developments and discuss new avenues in this evolving story ofE. granulosusinfection in man.


Parasitology ◽  
1992 ◽  
Vol 105 (S1) ◽  
pp. S25-S40 ◽  
Author(s):  
L. H. Chappell ◽  
J. M. Wastling

SUMMARYCyclosporin A (CsA), a cyclic undecapeptide with powerful properties of immunosuppression, acts on parasitic infections in laboratory animals in various ways. The outcome of drug administrationin vivovaries with timing of treatment relative to infection, route of administration, dose and number of treatments applied. CsA is clearly antiparasitic against malaria, schistosomes, adult tapeworms, metacestodes and filarial nematodes. By contrast, it acts as an immunomodulator against trypanosomes andGiardia, by exacerbating infection; in the case ofLeishmaniaspp. the drug acts variously. In some other infections CsA acts both as an antiparasite drug and as an immunosuppressant (Toxoplasma, avian coccidiosis and gastrointestinal nematodes).


2006 ◽  
Vol 84 (10) ◽  
pp. 1509-1519 ◽  
Author(s):  
Marie L. Davey ◽  
Randolph S. Currah

A taxonomically diverse suite of fungi interacts with bryophytes as pathogens, parasites, saprobes, and commensals. Necrotrophic pathogens such as Tephrocybe palustris (Peck) Donk and Nectria mnii Döbbeler form patches of moribund gametophytes in otherwise healthy mats of mosses. These pathogens exhibit different methods of host cell disruption; N. mnii appears to displace the host cell protoplast with intracellular hyphae, while T. palustris causes host protoplast degeneration. Host responses to infection by bryopathogens are also variable. Host–pathogen relationships can be highly evolved, as in Bryophytomyces sphagni (Navashin) Cif., in which fungal propagules replace the bryophyte spores, and exploit the explosive dispersal mechanisms of the Sphagnum host. Bryophilous parasites tend to exhibit high tissue or cellular specificity with varying host specificity. For example, Octospora similis (Kirchstein) Benkert infects the rhizoids of species of Bryum, and Discinella schimperi (Navashin) Redhead specifically colonizes the mucilage producing cells of stems of Sphagnum squarrosum Crome. Eocronartium muscicola (Pers.) Fitzp. demonstrates a highly evolved host–parasite relationship in which the basidiocarp displaces the sporophyte and is fed directly by the gametophyte through specialized transfer tissues. Fungi such as Oidiodendron maius Barron are capable of decomposing moss cell walls that are generally resistant to decomposition because of their polyphenolic component. Mycorrhizal fungi, including Glomus, Suillus, and Endogone, have not been observed to form functional, nutrient-exchanging mycorrhizal interfaces with bryophytes, rather, they function as saprobes on moribund and senescent gametophytes. Finally, endophytic fungi may provide bryophyte hosts with greater tolerance to extreme pH or promote vegetative growth. In vivo observation of bryophyte–fungus interactions has provided insight into the types of interactions that occur; however to further understand the physiology, anatomy, and etiology of these interactions, it is necessary to culture bryophilous fungi in vitro and create artificial axenic systems for study.


2007 ◽  
Vol 83 (1) ◽  
pp. 27-29 ◽  
Author(s):  
Alexandre M. Pinheiro ◽  
Cláudia Valle Santos ◽  
Maria de Fátima D. Costa ◽  
Luiz Erlon A. Rodrigues

2020 ◽  
Vol 20 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nurul Iman Natasya Zulkafali ◽  
Azizah Ugusman

: Matrix metalloproteinases (MMPs) are a group of zinc-dependent metallo-endopeptidase that are responsible towards the degradation, repair and remodelling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic and food industries. This review summarises the current knowledge on plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signalling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviours, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 172
Author(s):  
Mariusz Dziadas ◽  
Adam Junka ◽  
Henryk Jeleń

Eugenyl-β-D-glucopyranoside, also referred to as Citrusin C, is a natural glucoside found among others in cloves, basil and cinnamon plants. Eugenol in a form of free aglycone is used in perfumeries, flavourings, essential oils and in medicinal products. Synthetic Citrusin C was incubated with human saliva in several in vitro models together with substrate-specific enzyme and antibiotics (clindamycin, ciprofloxacin, amoxicillin trihydrate and potassium clavulanate). Citrusin C was detected using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Citrusin C was completely degraded only when incubated with substrate-specific A. niger glucosidase E.C 3.2.1.21 (control sample) and when incubated with human saliva (tested sample). The addition of antibiotics to the above-described experimental setting, stopped Citrusin C degradation, indicating microbiologic origin of hydrolysis observed. Our results demonstrate that Citrusin C is subjected to complete degradation by salivary/oral cavity microorganisms. Extrapolation of our results allows to state that in the human oral cavity, virtually all β-D-glucosides would follow this type of hydrolysis. Additionally, a new method was developed for an in vivo rapid test of glucosidase activity in the human mouth on the tongue using fluorescein-di-β-D-glucoside as substrate. The results presented in this study serve as a proof of concept for the hypothesis that microbial hydrolysis path of β-D-glucosides begins immediately in the human mouth and releases the aglycone directly into the gastrointestinal tract.


2021 ◽  
Vol 108 (Supplement_1) ◽  
Author(s):  
MI Khot ◽  
M Levenstein ◽  
R Coppo ◽  
J Kondo ◽  
M Inoue ◽  
...  

Abstract Introduction Three-dimensional (3D) cell models have gained reputation as better representations of in vivo cancers as compared to monolayered cultures. Recently, patient tumour tissue-derived organoids have advanced the scope of complex in vitro models, by allowing patient-specific tumour cultures to be generated for developing new medicines and patient-tailored treatments. Integrating 3D cell and organoid culturing into microfluidics, can streamline traditional protocols and allow complex and precise high-throughput experiments to be performed with ease. Method Patient-derived colorectal cancer tissue-originated organoidal spheroids (CTOS) cultures were acquired from Kyoto University, Japan. CTOS were cultured in Matrigel and stem-cell media. CTOS were treated with 5-fluorouracil and cytotoxicity evaluated via fluorescent imaging and ATP assay. CTOS were embedded, sectioned and subjected to H&E staining and immunofluorescence for ABCG2 and Ki67 proteins. HT29 colorectal cancer spheroids were produced on microfluidic devices using cell suspensions and subjected to 5-fluorouracil treatment via fluid flow. Cytotoxicity was evaluated through fluorescent imaging and LDH assay. Result 5-fluorouracil dose-dependent reduction in cell viability was observed in CTOS cultures (p<0.01). Colorectal CTOS cultures retained the histology, tissue architecture and protein expression of the colonic epithelial structure. Uniform 3D HT29 spheroids were generated in the microfluidic devices. 5-fluorouracil treatment of spheroids and cytotoxic analysis was achieved conveniently through fluid flow. Conclusion Patient-derived CTOS are better complex models of in vivo cancers than 3D cell models and can improve the clinical translation of novel treatments. Microfluidics can streamline high-throughput screening and reduce the practical difficulties of conventional organoid and 3D cell culturing. Take-home message Organoids are the most advanced in vitro models of clinical cancers. Microfluidics can streamline and improve traditional laboratory experiments.


Sign in / Sign up

Export Citation Format

Share Document