Role of Outer Capsid Proteins in Transmission of Phytoreovirus By Insect Vectors

1999 ◽  
pp. 15-43 ◽  
Author(s):  
Toshihiro Omura ◽  
Jin Yan
Virology ◽  
1994 ◽  
Vol 202 (1) ◽  
pp. 348-359 ◽  
Author(s):  
Jorge L. Martinez-Torrecuadrada ◽  
Hiroyuki Iwata ◽  
Angel Venteo ◽  
Ignacio Casal ◽  
Polly Roy

1996 ◽  
Vol 70 (8) ◽  
pp. 4877-4883 ◽  
Author(s):  
M C Ruiz ◽  
A Charpilienne ◽  
F Liprandi ◽  
R Gajardo ◽  
F Michelangeli ◽  
...  
Keyword(s):  

Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 959
Author(s):  
Celeste M. Donato ◽  
Julie E. Bines

Group A rotaviruses belong to the Reoviridae virus family and are classified into G and P genotypes based on the outer capsid proteins VP7 and VP4, respectively [...]


Insects ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Stefanie Fischnaller ◽  
Martin Parth ◽  
Manuel Messner ◽  
Robert Stocker ◽  
Christine Kerschbamer ◽  
...  

Apple proliferation (AP) is one of the economically most important diseases in European apple cultivation. The disease is caused by the cell-wall-less bacterium ’ Candidatus Phytoplasma mali’, which is transmitted by Cacopsylla picta (Foerster) and Cacopsylla melanoneura (Foerster) (Hemiptera: Psylloidea). In South Tyrol (Italy), severe outbreaks were documented since the 1990s. Infestation rates of AP do not always correlate with the population densities of the confirmed vectors, implying the presence of other, so far unknown, hemipterian vectors. By elucidating the species community of Auchenorrhyncha (Insecta: Hemiptera) at a regional scale, more than 31,000 specimens were captured in South Tyrolean apple orchards. The occurrence of 95 species was confirmed, whereas fourteen species are new records for this territory. Based on the faunistical data, more than 3600 individuals out of 25 species were analyzed using quantitative PCR to assess the presence of AP phytoplasma. The pathogen was sporadically detected in some individuals of different species, for example in Stictocephala bisonia Kopp and Yonk (Hemiptera: Membracidae). However, the concentration of phytoplasma was much lower than in infected C. picta and C. melanoneura captured in the same region, confirming the role of the latter mentioned psyllids as the main insect vectors of AP- phytoplasma in South Tyrol.


1980 ◽  
Vol 152 (4) ◽  
pp. 853-868 ◽  
Author(s):  
D H Rubin ◽  
B N Fields

The mammalian reoviruses (serotype 1, strain Lang and serotype 3, strain Dearing) differ in their sensitivity to digestion by chymotrypsin. We have found that the M2 double-stranded RNA (dsRNA) genome segment (encoding the micro1C outer capsid polypeptide) is responsible for this property. In addition to determining response to protease treatement in vitro, we have found that the M2 genome segment also determines the ability of these two viruses successfully to initiate local and systemic infection in newborn mice after peroral inoculation. Thus the M2 dsRNA segment defines a new virulence gene of the mammalian reoviruses.


2015 ◽  
Vol 16 (4) ◽  
pp. 211-215 ◽  
Author(s):  
Surendra K. Dara

Greenhouse white fly, Trialeurodes vaporariorum (Westwood); western flower thrips, Frankliniella occidentalis (Pergande); and strawberry aphid, Chaetosiphon fragaefolii (Cockerell), are common pests of strawberries in California and are vectors of one or more viruses. Most of the viruses transmitted by these vectors do not cause symptoms on strawberry when the infection occurs individually. However, when one of the viruses (Beet pseudoyellows virus or Strawberry pallidosis-associated virus) transmitted by T. vaporariorum is present along with one of the viruses transmitted by F. occidentalis, C. fragaefolii, or other sources, it results in a virus decline of strawberry, which can cause significant crop losses. Stunted root and plant growth, purple coloration of foliage, and dieback of the plant are some of the symptoms associated with virus decline. Increases in T. vaporariorum infestations during the past few years significantly elevated the risk of whitefly as a crop pest and a disease vector. This article reviews virus decline of strawberry, symptoms of infection, and the current status of insect vectors in California strawberries. Accepted for publication 17 November 2015. Published 20 November 2015.


2020 ◽  
Author(s):  
Stephanie Gummersheimer ◽  
Pranav Danthi

ABSTRACTThe capsids of mammalian reovirus contain two concentric protein shells, the core and the outer capsid. The outer capsid is comprised of µ1-σ3 heterohexamers which surround the core. The core is comprised of λ1 decamers held in place by σ2. After entry into the endosome, σ3 is proteolytically degraded and µ1 is cleaved and exposed to form ISVPs. ISVPs undergo further conformational changes to form ISVP*s, resulting in the release of µ1 peptides which facilitate the penetration of the endosomal membrane to release transcriptionally active core particles into the cytoplasm. Previous work has identified regions or specific residues within reovirus outer capsid that impact the efficiency of cell entry. We examined the functions of the core proteins λ1 and σ2. We generated a reovirus T3D reassortant that carries strain T1L derived σ2 and λ1 proteins (T3D/T1L L3S2). This virus displays a lower ISVP stability and therefore converts to ISVP*s more readily. To identify the basis for lability of T3D/T1L L3S2, we screened for hyper-stable mutants of T3D/T1L L3S2 and identified three point mutations in µ1 that stabilize ISVPs. Two of these mutations are located in the C-terminal ϕ region of µ1, which has not previously been implicated in controlling ISVP stability. Independent from compromised ISVP stability, we also found that T3D/T1L L3S2 launches replication more efficiently and produces higher yields in infected cells. In addition to identifying a new role for the core proteins in disassembly events, these data highlight that core proteins may influence multiple stages of infection.IMPORTANCEProtein shells of viruses (capsids) have evolved to undergo specific changes to ensure the timely delivery of genetic material to host cells. The 2-layer capsid of reovirus provides a model system to study the interactions between capsid proteins and the changes they undergo during entry. We tested a virus in which the core proteins were derived from a different strain than the outer capsid. We found that this mismatched virus was less stable and completed conformational changes required for entry prematurely. Capsid stability was restored by introduction of specific changes to the outer capsid, indicating that an optimal fit between inner and outer shells maintains capsid function. Separate from this property, mismatch between these protein layers also impacted the capacity of virus to initiate infection and produce progeny. This study reveals new insights into the roles of capsid proteins and their multiple functions during viral replication.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1073
Author(s):  
Xiao-Tian Tang ◽  
Cecilia Tamborindeguy

Autophagy, also known as type II programmed cell death, is a cellular mechanism of “self-eating”. Autophagy plays an important role against pathogen infection in numerous organisms. Recently, it has been demonstrated that autophagy can be activated and even manipulated by plant viruses to facilitate their transmission within insect vectors. However, little is known about the role of autophagy in the interactions of insect vectors with plant bacterial pathogens. ‘Candidatus Liberibacter solanacearum’ (Lso) is a phloem-limited Gram-negative bacterium that infects crops worldwide. Two Lso haplotypes, LsoA and LsoB, are transmitted by the potato psyllid, Bactericera cockerelli and cause damaging diseases in solanaceous plants (e.g., zebra chip in potatoes). Both LsoA and LsoB are transmitted by the potato psyllid in a persistent circulative manner: they colonize and replicate within psyllid tissues. Following acquisition, the gut is the first organ Lso encounters and could be a barrier for transmission. In this study, we annotated autophagy-related genes (ATGs) from the potato psyllid transcriptome and evaluated their expression in response to Lso infection at the gut interface. In total, 19 ATGs belonging to 17 different families were identified. The comprehensive expression profile analysis revealed that the majority of the ATGs were regulated in the psyllid gut following the exposure or infection to each Lso haplotype, LsoA and LsoB, suggesting a potential role of autophagy in response to Lso at the psyllid gut interface.


2017 ◽  
Vol 91 (20) ◽  
Author(s):  
Stefanie Grosse ◽  
Magalie Penaud-Budloo ◽  
Anne-Kathrin Herrmann ◽  
Kathleen Börner ◽  
Julia Fakhiri ◽  
...  

ABSTRACT The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus-like particles composed solely of the major capsid protein VP3, AAP's role in and relevance for assembly of genuine AAV capsids have remained largely unclear. Thus, we established a trans-complementation assay permitting assessment of AAP functionality during production of recombinant vectors based on complete AAV capsids and derived from any serotype. We find that AAP is indeed a critical factor not only for AAV2, but also for generation of vectors derived from nine other AAV serotypes. Moreover, we identify a new role of AAP in maintaining capsid protein stability in mammalian and insect cells. Thereby, our study expands our current understanding of AAV/AAP biology, and it concomitantly provides insights into the importance of AAP for AAV vector production.


Vaccine ◽  
2009 ◽  
Vol 27 (33) ◽  
pp. 4434-4438 ◽  
Author(s):  
Alan J. Guthrie ◽  
Melvyn Quan ◽  
Carina W. Lourens ◽  
Jean-Christophe Audonnet ◽  
Jules M. Minke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document