Expression of α Subunit of Gs in Escherichia coli

Author(s):  
Shui-Zhong Yan ◽  
Wei-Jen Tang
Keyword(s):  
1967 ◽  
Vol 242 (22) ◽  
pp. 5442-5446 ◽  
Author(s):  
John R. Guest ◽  
Gabriel R. Drapeau ◽  
Bruce C. Carlton ◽  
Charles Yanofsky

1999 ◽  
Vol 337 (3) ◽  
pp. 415-423 ◽  
Author(s):  
Emma C. LAW ◽  
Nigel J. SAVERY ◽  
Stephen J. W. BUSBY

The Escherichia coli cAMP receptor protein (CRP) is a factor that activates transcription at over 100 target promoters. At Class I CRP-dependent promoters, CRP binds immediately upstream of RNA polymerase and activates transcription by making direct contacts with the C-terminal domain of the RNA polymerase α subunit (αCTD). Since αCTD is also known to interact with DNA sequence elements (known as UP elements), we have constructed a series of semi-synthetic Class I CRP-dependent promoters, carrying both a consensus DNA-binding site for CRP and a UP element at different positions. We previously showed that, at these promoters, the CRP–αCTD interaction and the CRP–UP element interaction contribute independently and additively to transcription initiation. In this study, we show that the two halves of the UP element can function independently, and that, in the presence of the UP element, the best location for the DNA site for CRP is position -69.5. This suggests that, at Class I CRP-dependent promoters where the DNA site for CRP is located at position -61.5, the two αCTDs of RNA polymerase are not optimally positioned. Two experiments to test this hypothesis are presented.


2021 ◽  
Author(s):  
Helen Camakaris ◽  
Ji Yang ◽  
Tadashi Fujii ◽  
James Pittard

A novel selection was developed for RpoA α-CTD mutants altered in activation by the TyrR regulatory protein of E. coli K-12. This allowed the identification of an aspartate to asparagine substitution in residue 250 (DN250) as an Act - mutation. Amino acid residues known to be close to D250 were altered by in vitro mutagenesis, and substitutions DR250, RE310 and RD310 were all shown to be defective in activation. None of these mutations caused defects in UP regulation. The rpoA mutation DN250 was transferred onto the chromosome to facilitate the isolation of suppressor mutations. TyrR Mutations EK139 and RG119 caused partial suppression of rpoA DN250, and TyrR RC119, RL119, RP119, RA77 and SG100 caused partial suppression of rpoA RE310. Additional activation-defective rpoA mutants (DT250, RS310, EG288) were also isolated, using the chromosomal rpoA DN250 strain. Several new Act - tyrR mutants were isolated in an rpoA + strain, adding positions R77, D97, K101, D118, R119, R121 and E141 to known residues, S95 and D103, and defining the ‘activation patch’ on the NTD of TyrR. These results support a model for activation of TyrR-regulated genes where the ‘activation patch’ on the TyrR NTD interacts with the ‘TyrR-specific patch’ on the αCTD of RNA polymerase. Given known structures, both these sites appear to be surface exposed, and suggest a model for activation by TyrR. They also help resolve confusing results in the literature that implicated residues within the 261 and 265 determinants, as Activator contact sites. IMPORTANCE Regulation of transcription by RNA polymerases is fundamental for adaptation to a changing environment and for cellular differentiation, across all kingdoms of life. The gene TyrR in Escherichia coli is a particularly useful model because it is involved in both activation and repression of a large number of operons by a range of mechanisms, and it interacts with all three aromatic amino acids and probably other effectors. Furthermore TyrR has homologues in many other genera, regulating many different genes, utilizing different effector molecules, and in some cases affecting virulence, and important plant interactions.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Laura C. Ristow ◽  
Vy Tran ◽  
Kevin J. Schwartz ◽  
Lillie Pankratz ◽  
Andrew Mehle ◽  
...  

ABSTRACTTheEscherichia colihemolysin (HlyA) is a pore-forming exotoxin associated with severe complications of human urinary tract infections. HlyA is the prototype of the repeats-in-toxin (RTX) family, which includes LtxA fromAggregatibacter actinomycetemcomitans, a periodontal pathogen. The existence and requirement for a host cell receptor for these toxins are controversial. We performed an unbiased forward genetic selection in a mutant library of human monocytic cells, U-937, for host factors involved in HlyA cytotoxicity. The top candidate was the β2integrin β subunit. Δβ2cell lines are approximately 100-fold more resistant than wild-type U-937 cells to HlyA, but remain sensitive to HlyA at high concentrations. Similarly, Δβ2cells are more resistant than wild-type U-937 cells to LtxA, as Δβ2cells remain LtxA resistant even at >1,000-fold-higher concentrations of the toxin. Loss of any single β2integrin α subunit, or even all four α subunits together, does not confer resistance to HlyA. HlyA and LtxA bind to the β2subunit, but not to αL, αM, or αXin far-Western blots. Genetic complementation of Δβ2cells with either β2or β2with a cytoplasmic tail deletion restores HlyA and LtxA sensitivity, suggesting that β2integrin signaling is not required for cytotoxicity. Finally, β2mutations do not alter sensitivity to unrelated pore-forming toxins, as wild-type or Δβ2cells are equally sensitive toStaphylococcus aureusα-toxin andProteus mirabilisHpmA. Our studies show two RTX toxins use the β2integrin β subunit alone to facilitate cytotoxicity, but downstream integrin signaling is dispensable.IMPORTANCEUrinary tract infections are one of the most common bacterial infections worldwide. UropathogenicEscherichia colistrains are responsible for more than 80% of community-acquired urinary tract infections. Although we have known for nearly a century that severe infections stemming from urinary tract infections, including kidney or bloodstream infections are associated with expression of a toxin, hemolysin, from uropathogenicEscherichia coli, how hemolysin functions to enhance virulence is unknown. Our research defines the interaction of hemolysin with the β2integrin, a human white cell adhesion molecule, as a potential therapeutic target during urinary tract infections. TheE. colihemolysin is the prototype for a toxin family (RTX family) produced by a wide array of human and animal pathogens. Our work extends to the identification and characterization of the receptor for an additional member of the RTX family, suggesting that this interaction may be broadly conserved throughout the RTX toxin family.


2011 ◽  
Vol 286 (12) ◽  
pp. 10735-10743 ◽  
Author(s):  
Andrey M. Grishin ◽  
Eunice Ajamian ◽  
Limei Tao ◽  
Linhua Zhang ◽  
Robert Menard ◽  
...  

The utilization of phenylacetic acid (PA) in Escherichia coli occurs through a hybrid pathway that shows features of both aerobic and anaerobic metabolism. Oxygenation of the aromatic ring is performed by a multisubunit phenylacetyl-coenzyme A oxygenase complex that shares remote homology of two subunits to well studied bacterial multicomponent monooxygenases and was postulated to form a new bacterial multicomponent monooxygenase subfamily. We expressed the subunits PaaA, B, C, D, and E of the PA-CoA oxygenase and showed that PaaABC, PaaAC, and PaaBC form stable subcomplexes that can be purified. In vitro reconstitution of the oxygenase subunits showed that each of the PaaA, B, C, and E subunits are necessary for catalysis, whereas PaaD is not essential. We have determined the crystal structure of the PaaAC complex in a ligand-free form and with several CoA derivatives. We conclude that PaaAC forms a catalytic core with a monooxygenase fold with PaaA being the catalytic α subunit and PaaC, the structural β subunit. PaaAC forms heterotetramers that are organized very differently from other known multisubunit monooxygenases and lacks their conservative network of hydrogen bonds between the di-iron center and protein surface, suggesting different association with the reductase and different mechanisms of electron transport. The PaaA structure shows adaptation of the common access route to the active site for binding a CoA-bound substrate. The enzyme-substrate complex shows the orientation of the aromatic ring, which is poised for oxygenation at the ortho-position, in accordance with the expected chemistry. The PA-CoA oxygenase complex serves as a paradigm for the new subfamily multicomponent monooxygenases comprising several hundred homologs.


Sign in / Sign up

Export Citation Format

Share Document