In Vivo Deletion Analysis of the Architecture of a Multiprotein Complex of Translation Initiation Factors

Author(s):  
Klaus H. Nielsen ◽  
Leoš Valášek
2000 ◽  
Vol 20 (19) ◽  
pp. 7183-7191 ◽  
Author(s):  
Sang Ki Choi ◽  
DeAnne S. Olsen ◽  
Antonina Roll-Mecak ◽  
Agnes Martung ◽  
Keith L. Remo ◽  
...  

ABSTRACT To initiate protein synthesis, a ribosome with bound initiator methionyl-tRNA must be assembled at the start codon of an mRNA. This process requires the coordinated activities of three translation initiation factors (IF) in prokaryotes and at least 12 translation initiation factors in eukaryotes (eIF). The factors eIF1A and eIF5B from eukaryotes show extensive amino acid sequence similarity to the factors IF1 and IF2 from prokaryotes. By a combination of two-hybrid, coimmunoprecipitation, and in vitro binding assays eIF1A and eIF5B were found to interact directly, and the eIF1A binding site was mapped to the C-terminal region of eIF5B. This portion of eIF5B was found to be critical for growth in vivo and for translation in vitro. Overexpression of eIF1A exacerbated the slow-growth phenotype of yeast strains expressing C-terminally truncated eIF5B. These findings indicate that the physical interaction between the evolutionarily conserved factors eIF1A and eIF5B plays an important role in translation initiation, perhaps to direct or stabilize the binding of methionyl-tRNA to the ribosomal P site.


RNA ◽  
2009 ◽  
Vol 15 (5) ◽  
pp. 932-946 ◽  
Author(s):  
N. Deniz ◽  
E. M. Lenarcic ◽  
D. M. Landry ◽  
S. R. Thompson

2021 ◽  
Author(s):  
Zefeng Wang ◽  
Yun Yang ◽  
Xiaojuan Fan ◽  
Yanwen Ye ◽  
Chuyun Chen ◽  
...  

Although most eukaryotic mRNAs require a 5ʹ-cap for translation initiation, some can also be translated through a poorly studied cap-independent pathway. Here we developed a circRNA-based system and unbiasedly identified more than 10,000 sequences in the human transcriptome that contain Cap-independent Translation Initiators (CiTIs). Surprisingly, most of the identified CiTIs are located in 3ʹUTRs, which mainly promote translation initiation in mRNAs bearing highly structured 5ʹUTR. Mechanistically, CiTI recruits several translation initiation factors including eIF3 and DHX29, which in turn unwind 5ʹUTR structures and facilitate ribosome scanning. Functionally, we showed that the translation of HIF1A mRNA, an endogenous DHX29 target, is antagonistically regulated by its 5ʹUTR structure and a new 3ʹ-CiTI in response to hypoxia. Therefore, deletion of 3ʹ-CiTI suppresses cell growth in hypoxia and tumor progression in vivo. Collectively, our study uncovers a new regulatory mode for translation where the 3ʹUTR actively participate in the translation initiation.


2005 ◽  
Vol 171 (5) ◽  
pp. 811-821 ◽  
Author(s):  
Huidong Wang ◽  
Anna Iacoangeli ◽  
Daisy Lin ◽  
Keith Williams ◽  
Robert B. Denman ◽  
...  

Translational control at the synapse is thought to be a key determinant of neuronal plasticity. How is such control implemented? We report that small untranslated BC1 RNA is a specific effector of translational control both in vitro and in vivo. BC1 RNA, expressed in neurons and germ cells, inhibits a rate-limiting step in the assembly of translation initiation complexes. A translational repression element is contained within the unique 3′ domain of BC1 RNA. Interactions of this domain with eukaryotic initiation factor 4A and poly(A) binding protein mediate repression, indicating that the 3′ BC1 domain targets a functional interaction between these factors. In contrast, interactions of BC1 RNA with the fragile X mental retardation protein could not be documented. Thus, BC1 RNA modulates translation-dependent processes in neurons and germs cells by directly interacting with translation initiation factors.


2004 ◽  
Vol 78 (12) ◽  
pp. 6102-6111 ◽  
Author(s):  
Motoyasu Yoshii ◽  
Masaki Nishikiori ◽  
Kayo Tomita ◽  
Norimichi Yoshioka ◽  
Reiko Kozuka ◽  
...  

ABSTRACT The cum1 and cum2 mutations of Arabidopsis thaliana inhibit cucumber mosaic virus (CMV) multiplication. In cum1 and cum2 protoplasts, CMV RNA and the coat protein accumulated to wild-type levels, but the accumulation of the 3a protein of CMV, which is necessary for cell-to-cell movement of the virus, was strongly reduced compared with that in wild-type protoplasts. In cum2 protoplasts, the accumulation of turnip crinkle virus (TCV)-related RNA and proteins was also reduced. Positional cloning demonstrated that CUM1 and CUM2 encode eukaryotic translation initiation factors 4E and 4G, respectively. Unlike most cellular mRNA, the CMV RNA lacks a poly(A) tail, whereas the TCV RNA lacks both a 5′-terminal cap and a poly(A) tail. In vivo translation analyses, using chimeric luciferase mRNA carrying the terminal structures and untranslated sequences of the CMV or TCV RNA, demonstrated that these viral untranslated sequences contain elements that regulate the expression of encoded proteins positively or negatively. The cum1 and cum2 mutations had different effects on the action of these elements, suggesting that the cum1 and cum2 mutations cause inefficient production of CMV 3a protein and that the cum2 mutation affects the production of TCV-encoded proteins.


2008 ◽  
Vol 36 (4) ◽  
pp. 648-652 ◽  
Author(s):  
Nathaniel P. Hoyle ◽  
Mark P. Ashe

Both the process and synthesis of factors required for protein synthesis (or translation) account for a large proportion of cellular activity. In eukaryotes, the most complex and highly regulated phase of protein synthesis is that of initiation. For instance, across eukaryotes, at least 12 factors containing 22 or more proteins are involved, and there are several regulated steps. Recently, the localization of mRNA and factors involved in translation has received increased attention. The present review provides a general background to the subcellular localization of mRNA and translation initiation factors, and focuses on the potential functions of localized translation initiation factors. That is, as genuine sites for translation initiation, as repositories for factors and mRNA, and as sites of regulation.


Sign in / Sign up

Export Citation Format

Share Document