Carbonate chemistry dynamics in Bering Strait and the Chukchi Sea

2002 ◽  
Vol 55 (1-2) ◽  
pp. 77-94 ◽  
Author(s):  
I.I Pipko ◽  
I.P Semiletov ◽  
P.Ya Tishchenko ◽  
S.P Pugach ◽  
J.P Christensen
2009 ◽  
Vol 6 (11) ◽  
pp. 2421-2431 ◽  
Author(s):  
M. Chierici ◽  
A. Fransson

Abstract. In the summer of 2005, we sampled surface water and measured pH and total alkalinity (AT) underway aboard IB Oden along the Northwest Passage from Cape Farewell (South Greenland) to the Chukchi Sea. We investigated the variability of carbonate system parameters, focusing particularly on carbonate concentration [CO32−] and calcium carbonate saturation states, as related to freshwater addition, biological processes and physical upwelling. Measurements on AT, pH at 15°C, salinity (S) and sea surface temperature (SST), were used to calculate total dissolved inorganic carbon (CT), [CO32−] and the saturation of aragonite (ΩAr) and calcite (ΩCa) in the surface water. The same parameters were measured in the water column of the Bering Strait. Some surface waters in the Canadian Arctic Archipelago (CAA) and on the Mackenzie shelf (MS) were found to be undersaturated with respect to aragonite (ΩAr<1). In these areas, surface water was low in AT and CT (<1500 μmol kg−1) relative to seawater and showed low [CO32−]. The low saturation states were probably due to the likely the effect of dilution due to freshwater addition by sea ice melt (CAA) and river runoff (MS). High AT and CT and low pH, corresponded with the lowest [CO32−], ΩAr and ΩCa, observed near Cape Bathurst and along the South Chukchi Peninsula. This was linked to the physical upwelling of subsurface water with elevated CO2. The highest surface ΩAr and ΩCa of 3.0 and 4.5, respectively, were found on the Chukchi Sea shelf and in the cold water north of Wrangel Island, which is heavily influenced by high CO2 drawdown and lower CT from intense biological production. In the western Bering Strait, the cold and saline Anadyr Current carries water that is enriched in AT and CT from enhanced organic matter remineralization, resulting in the lowest ΩAr (~1.2) of the area.


2014 ◽  
Vol 11 (1) ◽  
pp. 943-974 ◽  
Author(s):  
V. M. C. Rérolle ◽  
M. Ribas-Ribas ◽  
V. Kitidis ◽  
I. Brown ◽  
D. C. E. Bakker ◽  
...  

Abstract. We present here a high resolution surface water pH dataset obtained in the Northwest European shelf seas in summer 2011. This is the first time that pH has been measured at such a high spatial resolution (10 measurements h–1) in this region. The aim of our paper is to investigate the carbonate chemistry dynamics of the surface water using pH and ancillary data. The main processes controlling the pH distribution along the ship's transect, and their relative importance, were determined using a statistical approach. The study highlights the impact of biological activity, temperature and riverine inputs on the carbonate chemistry dynamics of the shelf seas surface water. For this summer cruise, the biological activity formed the main control of the pH distribution along the cruise transect. Variations in chlorophyll and nutrients explained 29% of the pH variance along the full transect and as much as 68% in the northern part of the transect. In contrast, the temperature distribution explained ca. 50% of the pH variation in the Skagerrak region. Riverine inputs were evidenced by high dissolved organic carbon (DOC) levels in the Strait of Moyle (northern Irish Sea) and the southern North Sea with consequent remineralisation processes and a reduction in pH. The DOC distribution described 15% of the pH variance along the full transect. This study highlights the high spatial variability of the surface water pH in shelf seawaters where a range of processes simultaneously impacts the carbonate chemistry.


2018 ◽  
Author(s):  
Nancy G. Prouty ◽  
Kimberly K. Yates ◽  
Nathan Smiley ◽  
Chris Gallagher ◽  
Olivia Cheriton ◽  
...  

Abstract. Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding and predicting reef vulnerability to rising coastal CO2 concentrations and decreasing seawater pH. However, few studies exist along reefs occupying densely inhabited shorelines with known input from land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to the compounding stressors from land-based sources of pollution and lower seawater pH. To constrain the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili reef flat every 4 h over a 6-d sampling period in March 2016. Abiotic process – primarily SGD fluxes – controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ωarag) conditions. In contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by reef community metabolism. Superimposed on the diurnal signal was a transition during the second sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to ocean end-member TA and DIC measurements. A shift from net community production and calcification to net respiration and carbonate dissolution was identified. This transition occurred during a period of increased SGD-driven nutrient loading, lower wave height, and reduced current speeds. This detailed study of carbon chemistry dynamics highlights the need to incorporate local effects of nearshore oceanographic processes into predictions of coral reef vulnerability and resilience.


2017 ◽  
Vol 144 ◽  
pp. 104-111 ◽  
Author(s):  
Michael Gonsior ◽  
Jenna Luek ◽  
Philippe Schmitt-Kopplin ◽  
Jacqueline M. Grebmeier ◽  
Lee W. Cooper

2010 ◽  
Vol 16 (3) ◽  
pp. 337-351 ◽  
Author(s):  
Nina Keul ◽  
John W. Morse ◽  
Rik Wanninkhof ◽  
Dwight K. Gledhill ◽  
Thomas S. Bianchi

2020 ◽  
Author(s):  
Maria Luneva ◽  
Yevgeny Aksenov ◽  
Vladimir Ivanov ◽  
Stephen Kelly ◽  
Fedor Tuzov

&lt;p&gt;We explore dense water cascading (DWC; a type of bottom-trapped gravity current) on multi-decadal time scales using a pan-Arctic regional ocean-ice model. DWC is particularly important in the Arctic Ocean as the main mechanism of ventilation of interior waters when open ocean convection is blocked by strong density stratification. We identify the locations where the most intense DWC events occur and evaluate the associated cross-shelf mass, heat and salt fluxes.&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;A detailed analysis of specific cascading sites around the Beaufort Gyre and adjacent regions is performed. We find that autumn upwelling of warm and saltier Atlantic waters on the shelf and subsequent cooling and mixing of uplifted waters trigger the cascading on the West Chukchi Sea shelf break. We also perform Lagragian particle tacking of low salinity Pacific waters originating at the surface in the Bering Strait; these waters are shown to be modified by brine rejection and cooling, and through subsequent mixing become dense enough to reach depths of 160-200m and below. We examine the role of cascading and shelf upwelling on the shelf waters transformation, pathways and spread of the biological important tracers (O18, Si., DIC snd DIN).&lt;/p&gt;


1962 ◽  
Vol 19 (5) ◽  
pp. 815-838 ◽  
Author(s):  
Gordon C. Pike

Observations of gray whales from the coasts of British Columbia, Washington, and Alaska are compared with published accounts in order to re-assess knowledge of migration and feeding of the American herd. Source of material is mainly from lighthouses and lightships.The American herd of gray whales retains close contact with the shore during migration south of Alaska. Off Washington and British Columbia the northward migration begins in February, ends in May, and is at a peak during the first two weeks in April; the southward migration occurs in December and January, and is at a peak in late December. Northward migrants stop occasionally to rest or feed; southward migrants are travelling faster and appear not to stop to rest or feed during December and January. Gray whales seen off British Columbia, sometimes in inside protected waters, from June through October, probably remain in this area throughout the summer and fall months.Available evidence suggests that gray whales retain contact with the coast while circumscribing the Gulf of Alaska, enter the Bering Sea through eastern passages of the Aleutian chain, and approach St. Lawrence Island by way of the shallow eastern part of the Bering Sea. Arriving off the coast of St. Lawrence Island in May and June the herd splits with some parts dispersing along the Koryak coast and some parts continuing northward as the ice retreats through Bering Strait. Gray whales feed in the waters of the Chukchi Sea along the Siberian and Alaskan coasts in July, August and September. Advance of the ice through Bering Strait in October initiates the southern migration for most of the herd. In summering areas, in northern latitudes, gray whales feed in shallow waters on benthic and near-benthic organisms, mostly amphipods.There is no evidence to indicate that gray whales utilize ocean currents or follow the same routes as other baleen whales in their migrations. Visual contact with coastal landmarks appear to aid gray whales in successfully accomplishing the 5000-mile migration between summer feeding grounds in the Bering and Chukchi Seas and winter breeding grounds in Mexico.Reconstruction of the migration from all available data shows that most of the American herd breeds and calves in January and February, migrates northward in March, April and May, feeds from June through October, and migrates southward in November and December.


Sign in / Sign up

Export Citation Format

Share Document