A kinetic criterion of flammability limits: The C-H-O-inert system

1991 ◽  
Vol 23 (1) ◽  
pp. 413-421 ◽  
Author(s):  
C.K. Law ◽  
F.N. Egolfopoulos
2021 ◽  
Vol 126 ◽  
pp. 110395
Author(s):  
Qiangqiang Hao ◽  
Zhenmin Luo ◽  
Tao Wang ◽  
Chao Xie ◽  
Siqi Zhang ◽  
...  
Keyword(s):  

1999 ◽  
Vol 15 (6) ◽  
pp. 903-908 ◽  
Author(s):  
Hsin-Yi Shih ◽  
Hasan Bedir ◽  
James S. T’ien ◽  
Chih-Jen Sung

Author(s):  
Marilia A. Ramos ◽  
Enrique L. Droguett ◽  
Marcelo R. Martins ◽  
Henrique P. Souza

In recent decades, natural gas has been gaining importance in world energy scene and established itself as an important source of energy. One of the biggest obstacles to increase the usage of natural gas is its transportation, mostly done in its liquid form, LNG – Liquefied Natural Gas, and storage. It involves the liquefaction of natural gas, transport by ship, its storage and subsequent regasification, in order to get natural gas in its original form and send it to the final destination through natural gas pipeline system. Nowadays, most terminals for receiving, storing and regasificating LNG, as well as sending-out natural gas are built onshore. These terminals, however, are normally built close to populated areas, where consuming centers can be found, creating safety risks to the population nearby. Apart from possible damages caused by its cryogenic temperatures, LNG spills are associated with hazards such as pool fires and ignition of drifting vapor clouds. Alternatively to onshore terminals, there are currently several offshore terminals projects in the world and some are already running. Today, Brazil owns two FSRU (Floating Storage and Regasification Unit) type offshore terminals, one in Guanabara Bay, Rio de Janeiro and the other in Pece´m, Ceara´, both contracted to PETROBRAS. The identification of the operation risks sources of LNG terminals onshore and offshore and its quantification through mathematical models can identify the most suitable terminal type for a particular location. In order to identify and compare the risks suggested by onshore and offshore LNG terminals, we have taken the example of the Suape Port and its Industrial Complex, located in Pernambuco, Brazil, which is a promising location for the installation of a LNG terminal. The present work has focused on calculating the distance to the LNG vapor cloud with the lower flammability limits (LFL), as well as thermal radiation emitted by pool fire, in case of a LNG spill from an onshore and from an offshore terminal. The calculation was made for both day and night periods, and for three types of events: operational accident, non-operational accident and worst case event, corresponding to a hole size of 0,75m, 1,5m e 5m, respectively. Even though the accidents that happen at an onshore terminal generate smaller vulnerability distances, according to the results it would not be desirable for the Suape Port, due to the location high density of industries and people working. Therefore, an offshore terminal would be more desirable, since it presents less risk to the surrounding populations, as well as for workers in this location.


2016 ◽  
Vol 30 (10) ◽  
pp. 8737-8745 ◽  
Author(s):  
Carlos A. Gomez Casanova ◽  
Edwin Othen ◽  
John L. Sorensen ◽  
David B. Levin ◽  
Madjid Birouk

2021 ◽  
Author(s):  
Ghazanfar Mehdi ◽  
Maria Grazia De Giorgi ◽  
Donato Fontanarosa ◽  
Sara Bonuso ◽  
Antonio Ficarella

Abstract This study focused on the comparative analysis about the production of ozone and active radicals in presence of nanopulsed plasma discharge on air and on fuel/air mixture to investigate its effect on combustion enhancement. This analysis is based on numerical modeling of air and methane/air plasma discharge with different repetition rates (100 Hz, 1000 Hz and 10000 Hz). To this purpose, a two-step approach has been proposed based on two different chemistry solvers: a 0-D plasma chemistry solver (ZDPlasKin toolbox) and a combustion chemistry solver (CHEMKIN software suite). Consequently, a comprehensive chemical kinetic scheme was generated including both plasma excitation reactions and gas phase reactions. Validation of air and methane/air mechanisms was performed with experimental data. Kinetic models of both air and methane/air provides good fitting with experimental data of O atom generation and decay process. ZDPlasKin results were introduced in CHEMKIN in order to analyze combustion enhancement. It was found that the concentrations of O3 and O atom in air are higher than the methane/air activation. However, during the air activation peak concentration of ozone was significantly increased with repetition rates and maximum was observed at 10000 Hz. Furthermore, ignition timings and flammability limits were also improved with air and methane/air activation but the impact of methane/air activation was comparatively higher.


2011 ◽  
Vol 46 (5) ◽  
pp. 289-293 ◽  
Author(s):  
Shigeo Kondo ◽  
Akifumi Takahashi ◽  
Kenji Takizawa ◽  
Kazuaki Tokuhashi

Sign in / Sign up

Export Citation Format

Share Document