Absolute measurements of the O+C2H4 rate coefficient

1969 ◽  
Vol 12 (1) ◽  
pp. 289-299 ◽  
Author(s):  
A.A. Westenberg ◽  
N. deHaas
1969 ◽  
Vol 73 (5) ◽  
pp. 1181-1186 ◽  
Author(s):  
Arthur A. Westenberg ◽  
Newman De Haas

2020 ◽  
Vol 19 (5) ◽  
pp. 369
Author(s):  
Andreia Pelegrini ◽  
André De Araújo Pinto ◽  
Hector Cris Colares De Angelo ◽  
Gaia Salvador Claumann ◽  
Diego Augusto Santos Silva ◽  
...  

Several different instruments available on the market have been used for the estimation of body fat. However, many of these instruments have not been compared with reference criteria to verify their true accuracy. This study aimed to verify the validity of a bioelectrical impedance scale (OMRON-514C) for the estimation of body fat. Forty-four overweight adolescents (25 females) participated in this study, with an average age of 12.3 ± 1.1 years. All were submitted to body fat evaluations by air displacement plethysmography and bioelectrical impedance. Higher values of relative and absolute body fat were estimated by bioelectrical impedance compared to plethysmography (p < 0.05). There was no correlation between the relative body fat measurements between the two methods (r = 0.185; p = 0.228). The absolute measurements of body fat were correlated (r = 0.497, p = 0.001). Both in the measurements of relative (p= 0.034) and absolute body fat (p = 0.021), the bioelectrical impedance overestimated the measured values. Thus, in adolescents with characteristics similar to the present study, the estimate of body fat by the bioelectrical impedance (OMRON-514C) should be used with caution.Keywords: plethysmography, bioelectrical impedance, adolescents, overweight.


2020 ◽  
Vol 152 (9) ◽  
pp. 094306 ◽  
Author(s):  
Tomoya Tamadate ◽  
Hidenori Higashi ◽  
Takafumi Seto ◽  
Christopher J. Hogan

2020 ◽  
Vol 234 (7-9) ◽  
pp. 1251-1268 ◽  
Author(s):  
Satya Prakash Joshi ◽  
Prasenjit Seal ◽  
Timo Theodor Pekkanen ◽  
Raimo Sakari Timonen ◽  
Arrke J. Eskola

AbstractMethyl-Crotonate (MC, (E)-methylbut-2-enoate, CH3CHCHC(O)OCH3) is a potential component of surrogate fuels that aim to emulate the combustion of fatty acid methyl ester (FAME) biodiesels with significant unsaturated FAME content. MC has three allylic hydrogens that can be readily abstracted under autoignition and combustion conditions to form a resonantly-stabilized CH2CHCHC(O)OCH3 radical. In this study we have utilized photoionization mass spectrometry to investigate the O2 addition kinetics and thermal unimolecular decomposition of CH2CHCHC(O)OCH3 radical. First we determined an upper limit for the bimolecular rate coefficient of CH2CHCHC(O)OCH3 + O2 reaction at 600 K (k ≤ 7.5 × 10−17 cm3 molecule−1 s−1). Such a small rate coefficient suggest this reaction is unlikely to be important under combustion conditions and subsequent efforts were directed towards measuring thermal unimolecular decomposition kinetics of CH2CHCHC(O)OCH3 radical. These measurements were performed between 750 and 869 K temperatures at low pressures (<9 Torr) using both helium and nitrogen bath gases. The potential energy surface of the unimolecular decomposition reaction was probed at density functional (MN15/cc-pVTZ) level of theory and the electronic energies of the stationary points obtained were then refined using the DLPNO-CCSD(T) method with the cc-pVTZ and cc-pVQZ basis sets. Master equation simulations were subsequently carried out using MESMER code along the kinetically important reaction pathway. The master equation model was first optimized by fitting the zero-point energy corrected reaction barriers and the collisional energy transfer parameters $\Delta{E_{{\text{down}},\;{\text{ref}}}}$ and n to the measured rate coefficients data and then utilize the constrained model to extrapolate the decomposition kinetics to higher pressures and temperatures. Both the experimental results and the MESMER simulations show that the current experiments for the thermal unimolecular decomposition of CH2CHCHC(O)OCH3 radical are in the fall-off region. The experiments did not provide definite evidence about the primary decomposition products.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohamad Akbar Ali ◽  
M. Balaganesh ◽  
Faisal A. Al-Odail ◽  
K. C. Lin

AbstractThe rate coefficients for OH + CH3OH and OH + CH3OH (+ X) (X = NH3, H2O) reactions were calculated using microcanonical, and canonical variational transition state theory (CVT) between 200 and 400 K based on potential energy surface constructed using CCSD(T)//M06-2X/6-311++G(3df,3pd). The results show that OH + CH3OH is dominated by the hydrogen atoms abstraction from CH3 position in both free and ammonia/water catalyzed ones. This result is in consistent with previous experimental and theoretical studies. The calculated rate coefficient for the OH + CH3OH (8.8 × 10−13 cm3 molecule−1 s−1), for OH + CH3OH (+ NH3) [1.9 × 10−21 cm3 molecule−1 s−1] and for OH + CH3OH (+ H2O) [8.1 × 10−16 cm3 molecule−1 s−1] at 300 K. The rate coefficient is at least 8 order magnitude [for OH + CH3OH(+ NH3) reaction] and 3 orders magnitude [OH + CH3OH (+ H2O)] are smaller than free OH + CH3OH reaction. Our calculations predict that the catalytic effect of single ammonia and water molecule on OH + CH3OH reaction has no effect under tropospheric conditions because the dominated ammonia and water-assisted reaction depends on ammonia and water concentration, respectively. As a result, the total effective reaction rate coefficients are smaller. The current study provides a comprehensive example of how basic and neutral catalysts effect the most important atmospheric prototype alcohol reactions.


Author(s):  
Daniel C Morris ◽  
Stuart W Prescott ◽  
Jason B Harper

A series of ionic liquids based on the 1-alkyl-3-methylimidazolium cations were examined as components of the solvent mixture for a bimolecular substitution process. The effects on both the rate coefficient...


2020 ◽  
Vol 234 (7-9) ◽  
pp. 1233-1250 ◽  
Author(s):  
Arrke J. Eskola ◽  
Mark A. Blitz ◽  
Michael J. Pilling ◽  
Paul W. Seakins ◽  
Robin J. Shannon

AbstractThe rate coefficient for the unimolecular decomposition of CH3OCH2, k1, has been measured in time-resolved experiments by monitoring the HCHO product. CH3OCH2 was rapidly and cleanly generated by 248 nm excimer photolysis of oxalyl chloride, (ClCO)2, in an excess of CH3OCH3, and an excimer pumped dye laser tuned to 353.16 nm was used to probe HCHO via laser induced fluorescence. k1(T,p) was measured over the ranges: 573–673 K and 0.1–4.3 × 1018 molecule cm−3 with a helium bath gas. In addition, some experiments were carried out with nitrogen as the bath gas. Ab initio calculations on CH3OCH2 decomposition were carried out and a transition-state for decomposition to CH3 and H2CO was identified. This information was used in a master equation rate calculation, using the MESMER code, where the zero-point-energy corrected barrier to reaction, ΔE0,1, and the energy transfer parameters, ⟨ΔEdown⟩ × Tn, were the adjusted parameters to best fit the experimental data, with helium as the buffer gas. The data were combined with earlier measurements by Loucks and Laidler (Can J. Chem.1967, 45, 2767), with dimethyl ether as the third body, reinterpreted using current literature for the rate coefficient for recombination of CH3OCH2. This analysis returned ΔE0,1 = (112.3 ± 0.6) kJ mol−1, and leads to $k_{1}^{\infty}(T)=2.9\times{10^{12}}$ (T/300)2.5 exp(−106.8 kJ mol−1/RT). Using this model, limited experiments with nitrogen as the bath gas allowed N2 energy transfer parameters to be identified and then further MESMER simulations were carried out, where N2 was the buffer gas, to generate k1(T,p) over a wide range of conditions: 300–1000 K and N2 = 1012–1025 molecule cm−3. The resulting k1(T,p) has been parameterized using a Troe-expression, so that they can be readily be incorporated into combustion models. In addition, k1(T,p) has been parametrized using PLOG for the buffer gases, He, CH3OCH3 and N2.


Sign in / Sign up

Export Citation Format

Share Document