Flame development from an ignition kernel in laminar and turbulent homogeneous mixtures

1979 ◽  
Vol 17 (1) ◽  
pp. 255-263 ◽  
Author(s):  
Jerzy Chomiak
Fuel ◽  
2016 ◽  
Vol 170 ◽  
pp. 27-38 ◽  
Author(s):  
Ben G. Moxey ◽  
Alasdair Cairns ◽  
Hua Zhao

2018 ◽  
Vol 91 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Rui Liu ◽  
Xiaoping Su ◽  
Xiaodong Miao ◽  
Guang Yang ◽  
Xuefei Dong ◽  
...  

Purpose The purpose of this paper is to compare the combustion characteristics, including the combustion pressure, heat release rate (HRR), coefficient of variation (COV) of indicated mean effective pressure (IMEP), flame development period and combustion duration, of aviation kerosene fuel, namely, rocket propellant 3 (RP-3), and gasoline on a two-stoke spark ignition engine. Design/methodology/approach This paper is an experimental investigation using a bench test to reflect the combustion performance of two-stroke spark ignition unmanned aerial vehicle (UAV) engine on gasoline and RP-3 fuel. Findings Under low load conditions, the combustion performance and HRR of burning RP-3 fuel were shown to be worse than those of gasoline. Under high load conditions, the average IMEP and the COV of IMEP of burning RP-3 fuel were close to those of gasoline. The difference in the flame development period between gasoline and RP-3 fuel was similar. Practical implications Gasoline fuel has a low flash point, high-saturated vapour pressure and relatively high volatility and is a potential hazard near a naked flame at room temperature, which can create significant security risks for its storage, transport and use. Adopting a low volatility single RP-3 fuel of covering all vehicles and equipment to minimize the number of different devices with the use of a various fuels and improve the application safeties. Originality/value Most two-stroke spark ignition UAV engines continue to combust gasoline. A kerosene-based fuel operation can be applied to achieve a single-fuel policy.


Author(s):  
Paul Hii Shu-Yi ◽  
Amir Khalid ◽  
Anuar Mohamad ◽  
Bukhari Manshoor ◽  
Azwan Sapit ◽  
...  

2013 ◽  
Vol 315 ◽  
pp. 293-298 ◽  
Author(s):  
Amir Khalid ◽  
Bukhari Manshoor

Mixture formation plays as a key element on burning process that strongly affects the exhaust emissions such as nitrogen oxide (NOx) and Particulate Matter (PM). The reductions of emissions can be achieved with improvement throughout the mixing of fuel and air behavior. Measurements were made in an optically-accessible rapid compression machine (RCM) with intended to simulate the actual diesel combustion related phenomena. The diesel combustion was simulated with the RCM which is equipped with the Denso single-shot common-rail fuel injection system, capable of a maximum injection pressure up to 160MPa. Diesel engine compression process could be reproduced within the wide range of ambient temperature, ambient density, swirl velocity, equivalence ratio and fuel injection pressure. The mixture formation and combustion images were captured by the high speed camera. Analysis of combustion characteristics and observations of optical visualization of images reveal that the mixture formation exhibit influences to the ignition process and flame development. Therefore, the examination of the first stage of mixture formation is very important consideration due to the fuel-air premixing process linked with the combustion characteristics. Furthermore, the observation of a systematic control of mixture formation with experimental apparatus enables us to achieve considerable improvements of combustion process and would present the information for fundamental understanding in terms of reduced fuel consumption and exhaust emissions.


1992 ◽  
Author(s):  
Josef Hacohen ◽  
Michael R. Belmont ◽  
Richard W.F. Thurley ◽  
Jim C. Thomas ◽  
E. Layton Morris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document