Cerebral Glucose Metabolism in Obsessive-Compulsive Hoarding

2006 ◽  
Vol 2006 ◽  
pp. 302-303
Author(s):  
P.F. Buckley
2004 ◽  
Vol 161 (6) ◽  
pp. 1038-1048 ◽  
Author(s):  
Sanjaya Saxena ◽  
Arthur L. Brody ◽  
Karron M. Maidment ◽  
Erlyn C. Smith ◽  
Narineh Zohrabi ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Julien Delrieu ◽  
Thierry Voisin ◽  
Laure Saint-Aubert ◽  
Isabelle Carrie ◽  
Christelle Cantet ◽  
...  

Abstract Background The Multidomain Alzheimer Preventive Trial (MAPT) was designed to assess the efficacy of omega-3 fatty acid supplementation, multidomain intervention (MI), or a combination of both on cognition. Although the MAPT study was negative, an effect of MI in maintaining cognitive functions compared to placebo group was showed in positive amyloid subjects. A FDG PET study (MAPT-NI) was implemented to test the impact of MI on brain glucose metabolism. Methods MAPT-NI was a randomized, controlled parallel-group single-center study, exploring the effect of MI on brain glucose metabolism. Participants were non-demented and had memory complaints, limitation in one instrumental activity of daily living, or slow gait. Participants were randomly assigned (1:1) to “MI group” or “No MI group.” The MI consisted of group sessions focusing on 3 domains: cognitive stimulation, physical activity, nutrition, and a preventive consultation. [18F]FDG PET scans were performed at baseline, 6 months, and 12 months, and cerebral magnetic resonance imaging scans at baseline. The primary objective was to evaluate the MI effect on brain glucose metabolism assessed by [18F]FDG PET imaging at 6 months. The primary outcome was the quantification of regional metabolism rate for glucose in cerebral regions involved early in Alzheimer disease by relative semi-quantitative SUVr (FDG-based AD biomarker). An exploratory voxel-wise analysis was performed to assess the effect of MI on brain glucose metabolism without anatomical hypothesis. Results The intention-to-treat population included 67 subjects (34 in the MI group and 33 in the No MI group. No significant MI effect was observed on primary outcome at 6 months. In the exploratory voxel-wise analysis, we observed a difference in favor of MI group on the change of cerebral glucose metabolism in limbic lobe (right hippocampus, right posterior cingulate, left posterior parahippocampal gyrus) at 6 months. Conclusions MI failed to show an effect on metabolism in FDG-based AD biomarker, but exploratory analysis suggested positive effect on limbic system metabolism. This finding could suggest a delay effect of MI on AD progression. Trial registration ClinicalTrials.gov Identifier, NCT01513252.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yo-Han Joo ◽  
Yun-Kwan Kim ◽  
In-Gyu Choi ◽  
Hyeon-Jin Kim ◽  
Young-Don Son ◽  
...  

Abstract Background Perturbed functional coupling between the metabotropic glutamate receptor-5 (mGluR5) and N-methyl-d-aspartate (NMDA) receptor-mediated excitatory glutamatergic neurotransmission may contribute to the pathophysiology of psychiatric disorders such as schizophrenia. We aimed to establish the functional interaction between mGluR5 and NMDA receptors in brain of mice with genetic ablation of the mGluR5. Methods We first measured the brain glutamate levels with magnetic resonance spectroscopy (MRS) in mGluR5 knockout (KO) and wild-type (WT) mice. Then, we assessed brain glucose metabolism with [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography before and after the acute administration of an NMDA antagonist, MK-801 (0.5 mg/kg), in the same mGluR5 KO and WT mice. Results Between-group comparisons showed no significant differences in [18F]FDG standardized uptake values (SUVs) in brain of mGluR5 KO and WT mice at baseline, but widespread reductions in mGluR5 KO mice compared to WT mice after MK-801 administration (p < 0.05). The baseline glutamate levels did not differ significantly between the two groups. However, there were significant negative correlations between baseline prefrontal glutamate levels and regional [18F]FDG SUVs in mGluR5 KO mice (p < 0.05), but no such correlations in WT mice. Fisher’s Z-transformation analysis revealed significant between-group differences in these correlations (p < 0.05). Conclusions This is the first multimodal neuroimaging study in mGluR5 KO mice and the first report on the association between cerebral glucose metabolism and glutamate levels in living rodents. The results indicate that mGluR5 KO mice respond to NMDA antagonism with reduced cerebral glucose metabolism, suggesting that mGluR5 transmission normally moderates the net effects of NMDA receptor antagonism on neuronal activity. The negative correlation between glutamate levels and glucose metabolism in mGluR5 KO mice at baseline may suggest an unmasking of an inhibitory component of the glutamatergic regulation of neuronal energy metabolism.


2015 ◽  
Vol 6 ◽  
Author(s):  
Hibah O. Awwad ◽  
Larry P. Gonzalez ◽  
Paul Tompkins ◽  
Megan Lerner ◽  
Daniel J. Brackett ◽  
...  

1998 ◽  
Vol 12 (4) ◽  
pp. 362-367 ◽  
Author(s):  
Nobutsugu Hirono ◽  
Etsuro Mori ◽  
Minoru Yasuda ◽  
Kazunari Ishii ◽  
Yoshitaka Ikejiri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document