scholarly journals Structural Basis for the Function of the β Subunit of the Eukaryotic Signal Recognition Particle Receptor

Cell ◽  
2003 ◽  
Vol 112 (6) ◽  
pp. 793-803 ◽  
Author(s):  
Thomas Schwartz ◽  
Günter Blobel
2008 ◽  
Vol 29 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Kenji ABE ◽  
Takayuki HATTORI ◽  
Tomoyasu ISOBE ◽  
Kyoko KITAGAWA ◽  
Toshiaki ODA ◽  
...  

1999 ◽  
Vol 146 (4) ◽  
pp. 723-730 ◽  
Author(s):  
Gerald Bacher ◽  
Martin Pool ◽  
Bernhard Dobberstein

Protein targeting to the membrane of the ER is regulated by three GTPases, the 54-kD subunit of the signal recognition particle (SRP) and the α- and β-subunit of the SRP receptor (SR). Here, we report on the GTPase cycle of the β-subunits of the SR (SRβ). We found that SRβ binds GTP with high affinity and interacts with ribosomes in the GTP-bound state. Subsequently, the ribosome increases the GTPase activity of SRβ and thus functions as a GTPase activating protein for SRβ. Furthermore, the interaction between SRβ and the ribosome leads to a reduction in the affinity of SRβ for guanine nucleotides. We propose that SRβ regulates the interaction of SR with the ribosome and thereby allows SRα to scan membrane-bound ribosomes for the presence of SRP. Interaction between SRP and SRα then leads to release of the signal sequence from SRP and insertion into the translocon. GTP hydrolysis then results in dissociation of SR from the ribosome, and SRP from the SR.


Science ◽  
2014 ◽  
Vol 344 (6179) ◽  
pp. 101-104 ◽  
Author(s):  
Jan Timo Grotwinkel ◽  
Klemens Wild ◽  
Bernd Segnitz ◽  
Irmgard Sinning

The signal recognition particle (SRP) is central to membrane protein targeting; SRP RNA is essential for SRP assembly, elongation arrest, and activation of SRP guanosine triphosphatases. In eukaryotes, SRP function relies on the SRP68-SRP72 heterodimer. We present the crystal structures of the RNA-binding domain of SRP68 (SRP68-RBD) alone and in complex with SRP RNA and SRP19. SRP68-RBD is a tetratricopeptide-like module that binds to a RNA three-way junction, bends the RNA, and inserts an α-helical arginine-rich motif (ARM) into the major groove. The ARM opens the conserved 5f RNA loop, which in ribosome-bound SRP establishes a contact to ribosomal RNA. Our data provide the structural basis for eukaryote-specific, SRP68-driven RNA remodeling required for protein translocation.


Sign in / Sign up

Export Citation Format

Share Document