Dynamic analysis of rotor–shaft systems with viscoelastically supported bearings

2000 ◽  
Vol 35 (9) ◽  
pp. 1313-1330 ◽  
Author(s):  
N.H. Shabaneh ◽  
Jean W. Zu
Keyword(s):  
2021 ◽  
Vol 11 (9) ◽  
pp. 3829
Author(s):  
Haoliang Xu ◽  
Lihua Yang ◽  
Tengfei Xu

The research on the dynamic performance of the rod-fastened rotor (RFR) has always been a hotspot. However, the structural complexity of RFR has brought significant challenges to the dynamic study of the RFR. The tie rods provide preload for the rotor shaft segment, while the coordinate deformation of the tie rods will occur during the process of vibration. In addition, the tie rods and the rotor shaft segments are structurally connected in parallel. These factors all will influence the dynamic performance of the RFR. In this paper, for a RFR system, the vibration equation of the RFR considering all factors of the tie rods is deduced in detail. The influence of various factors on the dynamic performance of the rotor is investigated. Results show that the preload directly affects the dynamic performance of the RFR system. When the preload is small, the tie rod has a larger influence on the natural frequencies of the rotor. However, when the preload force reaches a certain value, the influence of the tie rod on the natural frequencies of the rotor is almost negligible. The research results provide a theoretical reference for the understanding of and further research on RFR.


2003 ◽  
Vol 125 (3) ◽  
pp. 290-298 ◽  
Author(s):  
Nabeel Shabaneh ◽  
Jean W. Zu

This research investigates the dynamic analysis of a single-rotor shaft system with nonlinear elastic bearings at the ends mounted on viscoelastic suspension. Timoshenko shaft model is utilized to incorporate the flexibility of the shaft; the rotor is considered to be rigid and located at the mid-span of the shaft. A nonlinear bearing pedestal model is assumed which has a cubic nonlinear spring and linear damping characteristics. The viscoelastic supports are modeled using Kelvin-Voigt model. Free and forced vibration is investigated based on the direct multiple scales method of one-to-one frequency-to-amplitude relationship using third order perturbation expansion. The results of the nonlinear analysis show that a limiting value of the internal damping coefficient of the shaft exists where the trend of the frequency-response curve switches. Also, the primary resonance peak shifts to higher frequencies with the increase of the bearing nonlinear elastic characteristics, but with a flattened curve and hence lower peak values. A jump phenomenon takes place for high values of the bearing nonlinear elastic characteristics.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Krishanu Ganguly ◽  
Saurabh Chandraker ◽  
Haraprasad Roy

Purpose The purpose of this study is to bring down collective information about various issues encountered in modelling of rotor systems. Design/methodology/approach The most important and basic part of “rotor dynamics” is the study related to its different modelling techniques which further involves the analysis of shaft for understanding the system potential, competence and reliability. The issues addressed in this study are classified mainly into two parts: the initial part gives out a vast overview of significant problems as well as different techniques applied to encounter modelling of rotor systems, while the latter part of the study describes the post-processing problem that occurs while performing the dynamic analysis. Findings The review incorporates the most important research works that have already placed a benchmark right from the beginning as well as the recent works that are still being carried out to further produce better outcomes. The review concludes with the modal analysis of rotor shaft to show the importance of mathematical model through its dynamic behaviour. Originality/value A critical literature review on the modelling techniques of rotor shaft systems is provided from earliest to latest along with its real-time application in different research and industrial fields.


Author(s):  
A. Purushotham ◽  
Shravan Kumar

Rotor dynamics is the study of vibration behavior in axially symmetric rotating structures. Devices such as engines, motors, disk drives and turbines all develop characteristic inertia effects that can be analyzed to improve the design and decrease the possibility of failure. At higher rotational speeds, such as in a gas pumps, the inertia effects of the rotating parts must be consistently represented in order to accurately predict the rotor behavior. An important part of the inertia effects is the gyroscopic moment introduced by the precession motion of the vibrating rotor as it spins. As spin velocity increases, the gyroscopic moment acting on the rotor becomes critically significant. Not accounting for these effects at the design level can lead to bearing and/or support structure damage. The main objective of this project is to study the Rotor Dynamic behavior of the drive rotor shaft of the Dry screw vacuum pump. The design of the pump is considered from the one of the reputed pump manufacturing industry. The operational speed of the pump is 4500 rpm, whereas the maximum capable speed of the pump is 10,000 rpm. Rotating machinery produces vibrations depending on the unbalanced mass and gyroscopic effects. Thus an investigation is to be made on the rotor dynamic properties of the shaft to find the natural frequencies and critical speed. For this rotor dynamic analysis was carried out in ANSYS APDL and Workbench16 to find the natural frequencies and critical speeds in the range of 0 to 10000 rpm. Thus an effort is made to shift the mass moment of inertia of the shaft by varying the design of the shaft and to shift the critical frequency to the higher speeds of the shaft there by increasing the efficiency. The modal analysis is performed to find the natural frequencies and it is extended to harmonic analysis to plot the stresses and deflections at the critical speeds. The design of the rotor shaft is made in NX-CAD.


1984 ◽  
Vol 106 (2) ◽  
pp. 235-238 ◽  
Author(s):  
D. M. Tang ◽  
M. Q. Wang

In this paper is introduced a method of dynamic analysis of the helicopter rotor coupled with fuselage in the rotating plane. The method has been used to determine the inplane rotor-fuselage dynamic properties of a light helicopter with fiberglass-reinforced plastics rotor blades. This paper makes particular reference to the effect of anisotropic dynamic stiffness of the rotor shaft end of fuselage on the natural dynamic characteristics.


2011 ◽  
Vol 131 (2) ◽  
pp. 166-170 ◽  
Author(s):  
Yoshihiro Nakata ◽  
Hiroshi Ishiguro ◽  
Katsuhiro Hirata

Sign in / Sign up

Export Citation Format

Share Document