Numerical investigation of heat and mass transfer in a metal hydride bed

2004 ◽  
Vol 150 (1) ◽  
pp. 169-180 ◽  
Author(s):  
Abdulkadir Dogan ◽  
Yuksel Kaplan ◽  
T.Nejat Veziroglu
2016 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Ali Boukhari

This work presents a numerical investigation of two-dimensional coupled heat and mass transfer processes in a unit disc of an annulus-disc reactor filled with the intermetallic (Mischmetal) compound MmNi4.6Fe0.4, during the hydrogen gas desorption using the finite volume method. Temperature and amount of desorbed hydrogen and their time-averaged quantities inside the metal hydride bed are presented for different heat transfer fluid temperatures, and different metal thermal conductivities. Impacts of both effects on the metal hydride reactor performance in terms of discharging time are examined by means of a set of numerical simulations. Thus, the dehydriding time minimization relates to the adjustment of the amount of heat addition to the packed bed reactor. A good agreement was found between the present computational results and the experimental data reported in the literature.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012122
Author(s):  
D O Dunikov ◽  
V I Borzenko ◽  
D V Blinov ◽  
A N Kazakov ◽  
I A Romanov ◽  
...  

Abstract Heat transfer in porous metal hydride (MH) beds determines efficiency of MH devices. We present a COMSOL Multiphysics numerical model and experimental investigation of heat and mass transfer in a MH reactor filled with 4.69 kg of AB5 type alloy (Mm0.8La0.2Ni4.1Fe0.8Al0.1). To achieve an agreement between the model and experiments it is necessary to include a flow control device (inlet valve or flow regulator) into the model. We propose a simplified and easy-to-calculate boundary condition based on a porous domain with variable permeability at reactor inlet. The permeability of the domain is connected with hydrogen mass flow by a PID controller. Thus, boundary conditions for the inlet pressure and mass flow are coupled and heat transfer inside the reactor could be calculated without additional assumptions applied to heat and mass transfer in the MH bed.


Sign in / Sign up

Export Citation Format

Share Document