The Hardy–Littlewood–Sobolev inequality for (β,γ)-distance Riesz potentials

2004 ◽  
Vol 153 (3) ◽  
pp. 757-762
Author(s):  
İnan Çinar ◽  
Hakki Duru
2020 ◽  
Vol 18 (1) ◽  
pp. 715-730
Author(s):  
Javanshir J. Hasanov ◽  
Rabil Ayazoglu ◽  
Simten Bayrakci

Abstract In this article, we consider the Laplace-Bessel differential operator {\Delta }_{{B}_{k,n}}=\mathop{\sum }\limits_{i=1}^{k}\left(\frac{{\partial }^{2}}{\partial {x}_{i}^{2}}+\frac{{\gamma }_{i}}{{x}_{i}}\frac{\partial }{\partial {x}_{i}}\right)+\mathop{\sum }\limits_{i=k+1}^{n}\frac{{\partial }^{2}}{\partial {x}_{i}^{2}},{\gamma }_{1}\gt 0,\ldots ,{\gamma }_{k}\gt 0. Furthermore, we define B-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials associated with the Laplace-Bessel differential operator. Moreover, we also obtain the boundedness of the B-maximal commutator {M}_{b,\gamma } and the commutator {[}b,{A}_{\gamma }] of the B-singular integral operator and Hardy-Littlewood-Sobolev-type theorem for the commutator {[}b,{I}_{\alpha ,\gamma }] of the B-Riesz potential on B-Morrey spaces {L}_{p,\lambda ,\gamma } , when b\in {\text{BMO}}_{\gamma } .


Author(s):  
Franck Barthe ◽  
Michał Strzelecki

AbstractProbability measures satisfying a Poincaré inequality are known to enjoy a dimension-free concentration inequality with exponential rate. A celebrated result of Bobkov and Ledoux shows that a Poincaré inequality automatically implies a modified logarithmic Sobolev inequality. As a consequence the Poincaré inequality ensures a stronger dimension-free concentration property, known as two-level concentration. We show that a similar phenomenon occurs for the Latała–Oleszkiewicz inequalities, which were devised to uncover dimension-free concentration with rate between exponential and Gaussian. Motivated by the search for counterexamples to related questions, we also develop analytic techniques to study functional inequalities for probability measures on the line with wild potentials.


2020 ◽  
Vol 10 (1) ◽  
pp. 400-419 ◽  
Author(s):  
Sihua Liang ◽  
Patrizia Pucci ◽  
Binlin Zhang

Abstract In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, $$\begin{array}{} \displaystyle -\left(a + b\int\limits_{\mathbb{R}^N} |\nabla u|^2 dx\right){\it\Delta} u = \alpha k(x)|u|^{q-2}u + \beta\left(\,\,\displaystyle\int\limits_{\mathbb{R}^N}\frac{|u(y)|^{2^*_{\mu}}}{|x-y|^{\mu}}dy\right)|u|^{2^*_{\mu}-2}u, \quad x \in \mathbb{R}^N, \end{array}$$ where a > 0, b ≥ 0, 0 < μ < N, N ≥ 3, α and β are positive real parameters, $\begin{array}{} 2^*_{\mu} = (2N-\mu)/(N-2) \end{array}$ is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality, k ∈ Lr(ℝN), with r = 2∗/(2∗ − q) if 1 < q < 2* and r = ∞ if q ≥ 2∗. According to the different range of q, we discuss the multiplicity of solutions to the above equation, using variational methods under suitable conditions. In order to overcome the lack of compactness, we appeal to the concentration compactness principle in the Choquard-type setting.


2020 ◽  
Vol 10 (1) ◽  
pp. 732-774
Author(s):  
Zhipeng Yang ◽  
Fukun Zhao

Abstract In this paper, we study the singularly perturbed fractional Choquard equation $$\begin{equation*}\varepsilon^{2s}(-{\it\Delta})^su+V(x)u=\varepsilon^{\mu-3}(\int\limits_{\mathbb{R}^3}\frac{|u(y)|^{2^*_{\mu,s}}+F(u(y))}{|x-y|^\mu}dy)(|u|^{2^*_{\mu,s}-2}u+\frac{1}{2^*_{\mu,s}}f(u)) \, \text{in}\, \mathbb{R}^3, \end{equation*}$$ where ε > 0 is a small parameter, (−△)s denotes the fractional Laplacian of order s ∈ (0, 1), 0 < μ < 3, $2_{\mu ,s}^{\star }=\frac{6-\mu }{3-2s}$is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality and fractional Laplace operator. F is the primitive of f which is a continuous subcritical term. Under a local condition imposed on the potential V, we investigate the relation between the number of positive solutions and the topology of the set where the potential attains its minimum values. In the proofs we apply variational methods, penalization techniques and Ljusternik-Schnirelmann theory.


Author(s):  
Zhang Lunchuan

Abstract In this paper, we prove the equivalence between logarithmic Sobolev inequality and hypercontractivity of a class of quantum Markov semigroup and its associated Dirichlet form based on a probability gage space.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Shuai Liu ◽  
Binwu He

An anisotropic convex Lorentz-Sobolev inequality is established, which extends Ludwig, Xiao, and Zhang’s result to any norm from Euclidean norm, and the geometric analogue of this inequality is given. In addition, it implies that the (anisotropic) Pólya-Szegö principle is shown.


Sign in / Sign up

Export Citation Format

Share Document