Indentation fracture toughness and dynamic elastic moduli for commercial feldspathic dental porcelain materials

2004 ◽  
Vol 20 (2) ◽  
pp. 198-206 ◽  
Author(s):  
A Rizkalla
2004 ◽  
Vol 19 (5) ◽  
pp. 1439-1454 ◽  
Author(s):  
G. Ghosh

Many intermetallics, such as Ag3Sn, AuSn4, Cu3Sn, Cu6Sn5 (η and η`), Ni3Sn4, and γ–Cu5Zn8 are present in modern solder interconnects as a result of solder chemistry and/or due to the interfacial reaction between solder and metallization scheme. Coarse-grained, single-phase intermetallics are produced by conventional casting followed by annealing for long time. Ambient temperature isotropic elastic moduli (bulk, Young’s, shear, and Poisson’s ratio) and selected plastic properties (hardness and indentation fracture toughness) of these intermetallics are presented. The isotropic elastic moduli of these intermetallics are determined by the pulse-echo technique. The measured bulk, Young’s and shear moduli lie in the range of 6.3 to 11.4 × 1010 N/m2, 7.1 to 12.3 × 1010 N/m2 and 2.7 to 4.5 × 1010 N/m2, respectively. The hardness and fracture toughness are determined by an indentation method. The loads used for indentation experiments were: 100–10,000 g for Ag3Sn and γ–Cu5Zn8, 10–50 g for AuSn4, 200–1000 g for Cu3Sn, 50–100 g for Cu6Sn5, and 100–200 g for Ni3Sn4. The measured Vickers hardness lies in the range of 50 to 470 Kg/mm2, and the measured indentation fracture toughness lies in the range of 2.5 to 5.7 MPa m1/2. Due to coarse grain size of the specimens, the indentation cracks were contained within one grain. In Cu3Sn, Cu6Sn5 (η and η`) and Ni3Sn4 intermetallics, the indentation cracks were found to be nearly straight and run along the indent diagonal. However, the cracks in AuSn4 showed significant zig-zag and branching phenomena, and they seemed to propagate along particular cleavage plane(s). The presence of slip bands are also observed in AuSn4, Ag3Sn, Cu3Sn, γ-Cu5Zn8, and Ni3Sn4. In the case of Ag3Sn and γ–Cu5Zn8, indentation cracks cannot be induced by applying loads up to 10 kg. Rather, extensive plastic deformation occurs resulting in the formation of a large number of shear/kink bands, and possibly twins, that spread across several grains. At a load of 5000 g or higher, Ag3Sn exhibits grain boundary decohesion near the indents. Among the intermetallics studied, Ag3Sn is shown to be the most ductile.


2015 ◽  
Vol 655 ◽  
pp. 1-5
Author(s):  
Peng Xi Li ◽  
Hong Qiang Wang ◽  
Liu Cheng Gui ◽  
Jun Li ◽  
Hai Long Zhang ◽  
...  

The transparent β-Si3N4ceramic with a whisker-like microstructure was prepared by hot-pressing at 2000 °C for 26 h, with MgSiN2as an additive. The resultant material achieves the maximum transmittance of 70 % at the wavelength of about 2.5 μm and the transmittance value keeps higher than 60 % in the range of 700-4500 nm wavelength, which is attributed to the very small amount of the intergranular amorphous phase along with high density. The present transparent β-Si3N4ceramic exhibits an indentation fracture toughness of 7.2±0.3 MPa m1/2.


2016 ◽  
Vol 721 ◽  
pp. 419-424
Author(s):  
M. Erkin Cura ◽  
Vivek Kumar Singh ◽  
Panu Viitaharju ◽  
Joonas Lehtonen ◽  
Simo Pekka Hannula

Chromium oxide is a promising material for applications where excellent corrosion resistance, high hardness, and high wear resistance are needed. However, its use is limited because of low fracture toughness. Improvement of fracture toughness of chromium oxide while maintaining its afore mentioned key properties is therefore of high interest. In this communication we study the possibility of increasing the toughness of pulsed electric current sintered (PECS) chromium oxide by the addition of graphene oxide (GO). The indentation fracture toughness was improved markedly with the addition of graphene oxide. Materials prepared by direct chemical homogenization had better fracture toughness. In composites with 10 vol.% GO piling of thin graphene oxide layers resulted in the formation of graphite layers between Cr2O3 and in carbide formation, which were observed to be the main reasons for the degradation of the mechanical properties. The distribution of graphene oxide was more homogeneous, when the GO amount was 0.1 vol.% and the formation of graphitic layers were avoided due to lesser amount of GO as well as ultrasonic treatment following the ball milling.


1981 ◽  
Vol 7 ◽  
Author(s):  
C. J. Mchargue ◽  
H. Naramoto ◽  
B. R. Appleton ◽  
C. W. White ◽  
J. M. Williams

ABSTRACTSingle crystals of Al2O3 were implanted with chromium and zirconium to fluences of 1 × 1016 to 1 × 1017 ions cm−2. Rutherford backscattering-channeling studies showed the surface layers to be damaged but crystalline with the implanted ions randomly distributed. The microhardness and indentation fracture toughness were higher for the random solutions than for conventionally formed solid solutions. Changes in structure and properties caused by annealing in air at temperatures up to 1800°C were studied.


1999 ◽  
Vol 22 (1) ◽  
pp. 25-32 ◽  
Author(s):  
A K Ray ◽  
G Das ◽  
N K Mukhopadhyay ◽  
D K Bhattacharya ◽  
E S Dwarakadasa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document