06/01866 Development of neural network models for the prediction of solidification mode, weld bead geometry and sensitisation in austenitic stainless steels

2006 ◽  
Vol 47 (4) ◽  
pp. 282-283
2021 ◽  
Vol 54 (2) ◽  
pp. 309-315
Author(s):  
Majid Midhat Saeed ◽  
Ziad Shakeeb Al Sarraf

Based on high quality and reliability, one of the most efficient methods for joining metals is Submerged Arc Welding (SAW). In this presented work, an attempt has been successfully taken to develop a model to predict the effect of input parameters on weld bead geometry of submerged arc welding process with the help of neural network technique and analysis of various process control variables and important of weld bead parameters in submerged arc welding. The complexity non-linear relationships of input / output variables for any computational models can be addressed by using artificial neural networks (ANN). Today, ANN represents a powerful modeling technique, that depend on statistical approach, presently practiced in many fields of engineering for modeling complex relationships that other physical models cannot be explained it easily. A welding process with automatic or semiautomatic is required to complete the weld through using tubular electrode with consumable flux. Parameters such as welding current, welding speed and voltage are influenced on the quality of the joints. The work conducts many experiments; these are basically depending on many factors and levels. A selection of 2205 duplex stainless steel is carried out in this study to conduct three factors and five levels of central composite design. Neural network model structure having number of neurons layers such as (3 input layers, 1 hidden layer and 3 output layers) with back propagation algorithm has been successfully applied to extract weld bead geometry from predicting the effect of input parameters. Good agreement was obtained between predicted and experiment results, however process parameters such as speed shows opposite effect on all weld parameters. It was seen that weld height and width are proportional to the amount of input current. The prediction of the neural network model showed excellent agreement with the actual results, which indicate that the neural network is viable means for predicting of not only weld bead geometry, but also other parameters such as polarity, current type and flux geometry. This recommends setting the neural network to be applicable for real time work.


2008 ◽  
Vol 587-588 ◽  
pp. 370-374 ◽  
Author(s):  
Altino Loureiro ◽  
A. Rodrigues

The aim of this research is the development of activating fluxes to improve weld bead geometry and increase weld penetration depth in austenitic stainless steels. The effect on bead geometry of two home-made fluxes, composed of titanium and aluminium oxides, was studied, in combination with two shielding gases, respectively Argon and an Argon/Helium mixture. A significant increase in penetration was obtained in welds done with the Ti based activating flux across the whole range of welding currents for both shielding gases, which was not the case for welds performed with the Al based flux. A decrease in δ-ferrite content in the weld metal with increasing current was observed only in welds done with the Ti based flux.


2020 ◽  
Vol 5 ◽  
pp. 140-147 ◽  
Author(s):  
T.N. Aleksandrova ◽  
◽  
E.K. Ushakov ◽  
A.V. Orlova ◽  
◽  
...  

The neural network models series used in the development of an aggregated digital twin of equipment as a cyber-physical system are presented. The twins of machining accuracy, chip formation and tool wear are examined in detail. On their basis, systems for stabilization of the chip formation process during cutting and diagnose of the cutting too wear are developed. Keywords cyberphysical system; neural network model of equipment; big data, digital twin of the chip formation; digital twin of the tool wear; digital twin of nanostructured coating choice


2018 ◽  
Vol 941 ◽  
pp. 679-685
Author(s):  
Kazuyoshi Saida ◽  
Tomo Ogura

The hot cracking (solidification cracking) susceptibility in the weld metals of duplex stainless steels were quantitatively evaluated by Transverse-Varestraint test with gas tungsten arc welding (GTAW) and laser beam welding (LBW). Three kinds of duplex stainless steels (lean, standard and super duplex stainless steels) were used for evaluation. The solidification brittle temperature ranges (BTR) of duplex stainless steels were 58K, 60K and 76K for standard, lean and super duplex stainless steels, respectively, and were comparable to those of austenitic stainless steels with FA solidification mode. The BTRs in LBW were 10-15K lower than those in GTAW for any steels. In order to clarify the governing factors of solidification cracking in duplex stainless steels, the solidification segregation behaviours of alloying and impurity elements were numerically analysed during GTAW and LBW. Although the harmful elements to solidification cracking such as P, S and C were segregated in the residual liquid phase in any joints, the solidification segregation of P, S and C in LBW was inhibited compared with GTAW due to the rapid cooling rate in LBW. It followed that the decreased solidification cracking susceptibility of duplex stainless steels in LBW would be mainly attributed to the suppression of solidification segregation of P, S and C.


Sign in / Sign up

Export Citation Format

Share Document