Reduction of the net harmonic current produced by single-phase non-linear loads due to attenuation and diversity effects

1998 ◽  
Vol 20 (4) ◽  
pp. 259-268 ◽  
Author(s):  
E.F. El-Saadany ◽  
M.M.A. Salama
2018 ◽  
Author(s):  
Asnil

One of the problems of electricity quality is harmonics. Harmonic is one ofthe components sinusoidal from one period wave that has the frequency representingmultiple from the fundamental component. Voltage and current distortion caused bynon-linear loads. One of kinds of non-linear loads is Inverter. Harmonic is verydisturbs and harm when exceeding standard limit that appointed. Standard worn asreference in this research is standard IEEE 519-1992, used to voltage limit andmaximum harmonic current.


This study investigated current harmonic distortions emanating from domestic non-linear loads which have adverse deleterious effects on installed low voltage switchgears such as transformers and conductors. The study examined harmonic distortions emanating from dominant domestic nonlinear loads such as microwave, TV set, radio, fridge, video player and compacted fluorescence bulbs (CFLs) using a power quality equipment. From the results obtained, it was noted that there is need to mitigate harmonic distortions generated by domestic loads at point of common coupling (PCC). It is pertinent to mention that the recent study on supplied loads carried out in Kenya power grid shows that above 67% of power end users are domestic consumers. Under current last mile initiative and Global Partnership on Output Based Aid (GPOBA), unprecedented increase of domestic loads connected to the power grid is predicted. It is worth pointing out that most of these domestic loads have switch mode power supplies (SMPS) which have inherent characteristics of distorting current waveform which causes voltage distortions, over-heating of neutral conductors and premature failure of distribution transformers. Further, most of these loads have two modes; standby/sleep mode and operating mode. Results shows that the two modes generate current harmonic distortions which stream back to power utility network through the service cable. Recently, engineers have designed electronic devices that consume less power. These devices draw current in pulses rather than sinusoidal waveform. As a result, the quality of power supplies continues to deteriorate hence adversely affecting the installed low voltage switchgears such as distribution transformers. Although various mitigation measures exist to reduce the effects of harmonic distortions, this paper proposes a single phase active filter as an optimal solution for attenuating the harmonics emanating from domestic non-linear loads.


2021 ◽  
Vol 3 (397) ◽  
pp. 92-96
Author(s):  
G. Tsitsikyan ◽  
◽  
S. Kunaev ◽  

Object and purpose of research. The object of research is the rectifier (transducer) OPED-12,5-115 (О – single phase; P – direct current; Е – natural air cooling; D – on diodes with an example of document record; 12.5 – current rating; 115 – voltage rating). Materials and methods. Methods of power electronics and harmonic analysis are applied. Main results. Ways of appraisal and restriction for the harmonic coefficient (non-linear distortion coefficient from transducer) are worked out taking account of an active load of higher frequencies generator (400 Hz). Conclusion. Numerical estimations for the attenuation coefficient of harmonics 3, 5 and 7 are obtained using basic values Xd and Xq of generator АТО-20.


2020 ◽  
Vol 130 ◽  
pp. 103530
Author(s):  
Vishal Goyal ◽  
Varun Hassija ◽  
Vikas Pandey ◽  
Suneet Singh

Author(s):  
R. A. Rani ◽  
Shakir Saat ◽  
Yusmarnita Yusop ◽  
Huzaimah Husin ◽  
F. K. Abdul Rahman ◽  
...  

This paper presents the effect of total harmonic distortion (THD) in power factor correction (PFC) at non-linear load. This study focuses on the relationship between THD and PFC. This is beacuse,the power factor affects THD. This occurs in power system as we have variety of loads, i. e linear load or non-linear load. The variety of loads will influence the sinusoidal waveform, which comes out from harmonic distortion. Thus, based on this study, we can compare the effective method in improving the power factor as it will not disturb the performance of THD. The focus of study is on the single phase load, where the voltage restriction is 240 V.  The analysis will  only focus on the consumer, which depends on the variety of non-linear load. Besides, the parameters for analysis are based on the percentage of THD and the value of power factor. The instrument for measuring the parameter is based on power factor correction device or technique. On the other hand, the method that was used for this study is based on simulation which incorporated the Multisim software. At the end of ths study, we can choose the most effective method that can be used to improve the power factor correction without disturbing the THD.


Sign in / Sign up

Export Citation Format

Share Document