Fatigue strength properties of welded joints of high-strength weldable structural steel [Schwingfestigkeitseigenschaften von Schweissverbindungen hochfester, schweissgeeigneter Baustahle] Prior, F. and Maurer, K.L. Materialwissen. Werkstoff. (1995) 26 (3), 161–171

1997 ◽  
Vol 19 (5) ◽  
pp. 438
1985 ◽  
Vol 12 (1) ◽  
pp. 166-183 ◽  
Author(s):  
Ian F.C. Smith ◽  
Manfred A. Hirt

Improving the fatigue strength of welded joints may be economically interesting in many situations, especially in those cases where high-strength steels are used. However, widespread use of a method is, in many cases, restricted by a lack of knowledge of its reliability. Previous work has focused only on the effectiveness of improvement methods to increase fatigue strength; cost studies and quality control instructions are rarely given.In this report, several methods for structural steel are summarized. A review of existing test results shows that improved connections made from a high yield strength steel reveal a higher percentage improvement than mild steel connections using the same improvement method. In addition, improved joints may be sensitive to the applied stress ratio. Finally, the most efficient method depends on the type of welded joint.Residual stress methods have relatively inexpensive application costs whereas some grinding methods are very costly. Quality control depends upon fabrication, loading, and environmental conditions. Examination of four types of fillet-welded joints has identified several methods that require further research. A three-dimensional finite element study of these joints predicts that at crack locations, under service loading, a very small plastic zone is formed. Therefore, residual stress methods may remain effective under variable-amplitude load conditions. Key words: structural steel, welded joints, fatigue, improvement methods, fillet welds, finite element analysis.


1999 ◽  
Vol 13 (5) ◽  
pp. 385-391
Author(s):  
Y Kobayashi ◽  
Y Tanaka ◽  
H Goto ◽  
K Matsuoka ◽  
Y Motohashi

2016 ◽  
Vol 250 ◽  
pp. 169-174 ◽  
Author(s):  
Tomasz Slezak ◽  
Lucjan Sniezek

The article presents the results of research on low cycle fatigue strength of welded joints of structural steel S960QL. Two types of butt welds were analysed: I-joints and V-joints. The tests were performed under load controlled using the total strain amplitude εac. Fatigue life analysis was conducted based on the Manson-Coffin-Basquin equation, which made it possible to determine fatigue parameters. High concordance was found of the adopted description model with experimental results. Studies have shown differences in the fatigue life of the various joints analysed, wherein I-joints showed about 20-50% higher fatigue life. Fractographic tests of fatigue fractures in joints revealed the details of fatigue cracking and differences in the propagation rate of fatigue cracks.


1988 ◽  
Vol 110 (3) ◽  
pp. 171-176
Author(s):  
Y. Nakano ◽  
Y. Saito ◽  
K. Amano ◽  
M. Koda ◽  
Y. Sannomiya ◽  
...  

This paper describes the metallurgical approaches for producing 415MPa and 460MPa yield strength offshore structural steel plates and the mechanical properties of the steel plates and their welded joints. A thermo-mechanical control process (TMCP) was adopted to manufacture YP415MPa and YP460MPa steel plates with weldability comparable to conventional YP355MPa steel plates. The Charpy impact and CTOD tests of the steel plates and their welded joints proved to be very good.


2011 ◽  
Vol 462-463 ◽  
pp. 94-99
Author(s):  
Keiichiro Tohgo ◽  
Tomoya Ohguma ◽  
Yoshinobu Shimamura ◽  
Yoshifumi Ojima

In this paper, fatigue tests and finite element analyses are carried out on spot welded joints of mild steel (270MPa class) and ultra-high strength steel (980MPa class) in order to investigate the influence of strength level of base steels on fatigue strength and fracture morphology of spot welded joints. From the fatigue tests the following results are obtained: (1) Fatigue limit of spot welded joints is almost the same in both steels. (2) Fatigue fracture morphology of spot welded joints depends on the load level in the ultra-high strength steel, but not in the mild steel. From discussion based on the finite element analyses the following results are obtained: (3) The fatigue limit of spot welded joints can be predicted by stress intensity factors for a nugget edge, fracture criterion for a mixed mode crack and threshold value for fatigue crack growth in base steel. (4) Plastic deformation around a nugget in spot welded joints strongly affects the fatigue fracture morphology.


Sign in / Sign up

Export Citation Format

Share Document