Development of advanced SQUID system for nondestructive evaluation of material degradation in power plants Otake, M. and Hayashi, E. 13th International Conference on NDE in the Nuclear and Pressure Vessel Industries, Kyoto, Japan (22–25 May 1995) 331–335

1997 ◽  
Vol 19 (5) ◽  
pp. 441
Author(s):  
Li Chengliang ◽  
Shu Guogang ◽  
Chen Jun ◽  
Liu Yi ◽  
Liu Wei ◽  
...  

The effect of neutron irradiation damage of reactor pressure vessel (RPV) steels is a main failure mode. Accelerated neutron irradiation experiments at 292 °C were conducted on RPV steels, followed by testing of the mechanical, electrical and magnetic properties for both the unirradiated and irradiated steels in a hot laboratory. The results showed that a significant increase in the strength, an obvious decrease in toughness, a corresponding increase in resistivity, and the clockwise turn of the hysteresis loops, resulting in a slight decrease in saturation magnetization when the RPV steel irradiation damage reached 0.0409 dpa; at the same time, the variation rate of the resistivity between the irradiated and unirradiated RPV steels shows good agreement with the variation rates of the mechanical properties parameters, such as nano-indentation hardness, ultimate tensile strength, yield strength at 0.2% offset, upper shelf energy and reference nil ductility transition temperature. Thus, as a complement to destructive mechanical testing, the resistivity variation can be used as a potentially non-destructive evaluation technique for the monitoring of the RPV steel irradiation damage of operational nuclear power plants.


Author(s):  
Yongjian Gao ◽  
Yinbiao He ◽  
Ming Cao ◽  
Yuebing Li ◽  
Shiyi Bao ◽  
...  

In-Vessel Retention (IVR) is one of the most important severe accident mitigation strategies of the third generation passive Nuclear Power Plants (NPP). It is intended to demonstrate that in the case of a core melt, the structural integrity of the Reactor Pressure Vessel (RPV) is assured such that there is no leakage of radioactive debris from the RPV. This paper studied the IVR issue using Finite Element Analyses (FEA). Firstly, the tension and creep testing for the SA-508 Gr.3 Cl.1 material in the temperature range of 25°C to 1000°C were performed. Secondly, a FEA model of the RPV lower head was built. Based on the assumption of ideally elastic-plastic material properties derived from the tension testing data, limit analyses were performed under both the thermal and the thermal plus pressure loading conditions where the load bearing capacity was investigated by tracking the propagation of plastic region as a function of pressure increment. Finally, the ideal elastic-plastic material properties incorporating the creep effect are developed from the 100hr isochronous stress-strain curves, limit analyses are carried out as the second step above. The allowable pressures at 0 hr and 100 hr are obtained. This research provides an alternative approach for the structural integrity evaluation for RPV under IVR condition.


2021 ◽  
Vol 14 (1) ◽  
pp. 34-39
Author(s):  
D. A. Kuzmin ◽  
A. Yu. Kuz’michevskiy

The destruction of equipment metal by a brittle fracture mechanism is a probabilistic event at nuclear power plants (NPP). The calculation for resistance to brittle destruction is performed for NPP equipment exposed to neutron irradiation; for example, for a reactor plant such as a water-water energetic reactor (WWER), this is a reactor pressure vessel. The destruction of the reactor pressure vessel leads to a beyond design-basis accident, therefore, the determination of the probability of brittle destruction is an important task. The research method is probabilistic analysis of brittle destruction, which takes into account statistical data on residual defectiveness of equipment, experimental results of equipment fracture toughness and load for the main operating modes of NPP equipment. Residual defectiveness (a set of remaining defects in the equipment material that were not detected by non-destructive testing methods after manufacturing (operation), control and repair of the detected defects) is the most important characteristic of the equipment material that affects its strength and service life. A missed defect of a considerable size admitted into operation can reduce the bearing capacity and reduce the time of safe operation from the nominal design value down to zero; therefore, any forecast of the structure reliability without taking into account residual defectiveness will be incorrect. The application of the developed method is demonstrated on the example of an NPP reactor pressure vessel with a WWER-1000 reactor unit when using the maximum allowable operating loads, in the absence of load dispersion in different operating modes, and taking into account the actual values of the distributions of fracture toughness and residual defectiveness. The practical significance of the developed method lies in the possibility of obtaining values of the actual probability of destruction of NPP equipment in order to determine the reliability of equipment operation, as well as possible reliability margins for their subsequent optimization.


Author(s):  
Kazuyuki ISAWA ◽  
Satoshi NAKAYAMA ◽  
Masanori IKEDA ◽  
Sakae TAKAGI ◽  
Shigeru TOSAKA

Author(s):  
Juyoul Kim ◽  
Batbuyan Tseren

Assessing workers’ safety and health during the decommissioning of nuclear power plants (NPPs) is an important procedure in terms of occupational radiation exposure (ORE). Optimizing the radiation exposure through the “As Low As Reasonably Achievable (ALARA)” principle is a very important procedure in the phase of nuclear decommissioning. Using the VISIPLAN 3D ALARA planning tool, this study aimed at assessing the radiological doses to workers during the dismantling of the reactor pressure vessel (RPV) at Kori NPP unit 1. Fragmentation and segmentation cutting processes were applied to cut the primary component. Using a simulation function in VISIPLAN, the external exposure doses were calculated for each work operation. Fragmentation involved 18 operations, whereas segmentation comprised 32 operations for each fragment. Six operations were additionally performed for both hot and cold legs of the RPV. The operations were conducted based on the radioactive waste drum’s dimensions. The results in this study indicated that the collective doses decreased as the components were cut into smaller segments. The fragmentation process showed a relatively higher collective dose compared to the segmentation operation. The active part of the RPV significantly contributed to the exposure dose and thus the shielding of workers and reduced working hours need to be considered. It was found that 60Co contained in the stainless steel of the reactor vessel greatly contributed to the dose as an activation material. The sensitivity analysis, which was conducted for different cutting methods, showed that laser cutting took a much longer time than plasma cutting and contributed higher doses to the workers. This study will be helpful in carrying out the occupational safety and health management of decommissioning workers at Kori NPP unit 1 in the near future.


2013 ◽  
Vol 448-453 ◽  
pp. 2993-2998
Author(s):  
Xue Mei Chen ◽  
Xin Wang ◽  
Mo Jie Sun

Polyacrylamide Composite Diatomite as Raw Material Degradation-Resistant Oil Dehydration Experiments Conducted Deacidification,examine the Amount of Added Polyacrylamide, that:Polyacrylamide Dosage is 1g, Drying Temperature is Drying Temperature, Naoh Dosage on the Degradation of Impact-Resistant Oil. the Results Showed 25°C, Naoh Dosage of 1g of Circumstances,Degradation-Resistant Oil Resistant Oil Acid Acid Degradation from 0.34mgKOH/g Dropped 0.2mgKOH/g; Moisture from 8334.2mg/L Dropped 4180.3mg/L. Compared with Ordinary Diatomaceous Earth, Diatomite Composite Polyacrylamide Degradation Resistant Oil Deacidification Dehydration Better and with Less Cheap, Suitable for Power Plants.


Sign in / Sign up

Export Citation Format

Share Document