Different growth behaviour of human umbilical vein endothelial cells and an endothelial cell line seeded on various polymer surfaces

Biomaterials ◽  
1998 ◽  
Vol 19 (24) ◽  
pp. 2285-2290 ◽  
Author(s):  
E Imbert
1987 ◽  
Author(s):  
O BOUTHERIN-FALSON ◽  
N BLAES

Prostacyclin (PGI2) is a major product of arachidonic acid metabolism in vascular endothelial cells. In addition to the role of exogenous agents, its production could be modulated by culture conditions : proliferative state, medium renewal, subcultivation... The use of endothelial cell growth factor (ECGF) associated with heparin has been shown to improve human endothelial cell proliferation. Here we report that human umbilical vein endothelial cells (HUVEC) grown in that medium produce less prostacyclin than without growth factor.HUVEC were cultured in RPMI-199 1:1 + 20% fetal calf serum, added or not with ECGF (Bovine hypothalamus extract BTI Cambridge, 24 ug/ml) and heparin (from porcine intestinal mucosa, Signa, 90 ug/ml). After 4 days in culture, medium was removed and replaced by Tyrode Hepes buffer and basal production was measured after 20 min. Cells were then submitted to 5 min thrombin to assess PGI2 production in stimulated conditions. PGI2 production was estimated by specific radioimmunoassay for 6 keto PGFjalpha. For each point, cell number in the culture was counted after Trypsin EDTA treatment. In the present study, cells grown in ECGF-heparin medium produce lower amount of PGI2, compared to heparin or control medium. This result was observed in both basal and stimulated conditions. For each medium (ECGF-heparin, heparin, control), correlations between PGI2 production per cell and log cell density were shown to be significantly negative.These observations suggest that ECGF effect on PGI2 production could be a consequence of its growth factor activity, notably by the fact that it leads to an endothelial monolayer made of more numerous cells. Since it is now suggested by a number of clinical observations that PGI2 is rather produced in pathological conditions, culture models showing a weak production of PGI2 appear in that connection doser to the physiological conditions.


1998 ◽  
Vol 125 (2) ◽  
pp. 357-364 ◽  
Author(s):  
Alan R Conant ◽  
Michael J Fisher ◽  
Alexander G McLennan ◽  
Alec W M Simpson

RSC Advances ◽  
2015 ◽  
Vol 5 (54) ◽  
pp. 43552-43562 ◽  
Author(s):  
Satish N. Nadig ◽  
Suraj K. Dixit ◽  
Natalie Levey ◽  
Scott Esckilsen ◽  
Kayla Miller ◽  
...  

Targeted micelles containing rapamycin (TRaM) suppressed the immune response of IL-8 in oxidatively stressed human umbilical vein endothelial cellsin vitro(a) and accumulated in aorta grafts for transplantation after 6 hours in cold perfusion solution (b).


Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4675-4683 ◽  
Author(s):  
Ben T. Atkinson ◽  
Reema Jasuja ◽  
Vivien M. Chen ◽  
Prathima Nandivada ◽  
Bruce Furie ◽  
...  

Laser-induced vessel wall injury leads to rapid thrombus formation in an animal thrombosis model. The target of laser injury is the endothelium. We monitored calcium mobilization to assess activation of the laser-targeted cells. Infusion of Fluo-4 AM, a calcium-sensitive fluorochrome, into the mouse circulation resulted in dye uptake in the endothelium and circulating hematopoietic cells. Laser injury in mice treated with eptifibatide to inhibit platelet accumulation resulted in rapid calcium mobilization within the endothelium. Calcium mobilization correlated with the secretion of lysosomal-associated membrane protein 1, a marker of endothelium activation. In the absence of eptifibatide, endothelium activation preceded platelet accumu-lation. Laser activation of human umbilical vein endothelial cells loaded with Fluo-4 resulted in a rapid increase in calcium mobilization associated cell fluorescence similar to that induced by adenosine diphosphate (10μM) or thrombin (1 U/mL). Laser activation of human umbilical vein endothelial cells in the presence of corn trypsin inhibitor treated human plasma devoid of platelets and cell microparticles led to fibrin for-mation that was inhibited by an inhibitory monoclonal anti–tissue factor antibody. Thus laser injury leads to rapid endothelial cell activation. The laser activated endothelial cells can support formation of tenase and prothrombinase and may be a source of activated tissue factor as well.


Sign in / Sign up

Export Citation Format

Share Document