Uptake of vitamin A and retinol-binding protein by human placenta in vitro

Placenta ◽  
1986 ◽  
Vol 7 (4) ◽  
pp. 295-305 ◽  
Author(s):  
H TORMA ◽  
A VAHLQUIST
1973 ◽  
Vol 248 (5) ◽  
pp. 1544-1549 ◽  
Author(s):  
John Edgar Smith ◽  
Yasutoshi Muto ◽  
Peter O. Milch ◽  
DeWitt S. Goodman

2015 ◽  
Vol 8 (4-6) ◽  
pp. 164-173 ◽  
Author(s):  
Katie Goodwin ◽  
Michal Abrahamowicz ◽  
Gabriel Leonard ◽  
Michel Perron ◽  
Louis Richer ◽  
...  

1993 ◽  
Vol 7 (12) ◽  
pp. 1179-1184 ◽  
Author(s):  
Rodolfo Berni ◽  
Monica Clerici ◽  
Giorgio Malpeli ◽  
Loredana Cleris ◽  
Franca Formelli

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3987
Author(s):  
Nicasio Martin Ask ◽  
Matthias Leung ◽  
Rakesh Radhakrishnan ◽  
Glenn P. Lobo

Vitamins are essential compounds obtained through diet that are necessary for normal development and function in an organism. One of the most important vitamins for human physiology is vitamin A, a group of retinoid compounds and carotenoids, which generally function as a mediator for cell growth, differentiation, immunity, and embryonic development, as well as serving as a key component in the phototransduction cycle in the vertebrate retina. For humans, vitamin A is obtained through the diet, where provitamin A carotenoids such as β-carotene from plants or preformed vitamin A such as retinyl esters from animal sources are absorbed into the body via the small intestine and converted into all-trans retinol within the intestinal enterocytes. Specifically, once absorbed, carotenoids are cleaved by carotenoid cleavage oxygenases (CCOs), such as Beta-carotene 15,15’-monooxygenase (BCO1), to produce all-trans retinal that subsequently gets converted into all-trans retinol. CRBP2 bound retinol is then converted into retinyl esters (REs) by the enzyme lecithin retinol acyltransferase (LRAT) in the endoplasmic reticulum, which is then packaged into chylomicrons and sent into the bloodstream for storage in hepatic stellate cells in the liver or for functional use in peripheral tissues such as the retina. All-trans retinol also travels through the bloodstream bound to retinol binding protein 4 (RBP4), where it enters cells with the assistance of the transmembrane transporters, stimulated by retinoic acid 6 (STRA6) in peripheral tissues or retinol binding protein 4 receptor 2 (RBPR2) in systemic tissues (e.g., in the retina and the liver, respectively). Much is known about the intake, metabolism, storage, and function of vitamin A compounds, especially with regard to its impact on eye development and visual function in the retinoid cycle. However, there is much to learn about the role of vitamin A as a transcription factor in development and cell growth, as well as how peripheral cells signal hepatocytes to secrete all-trans retinol into the blood for peripheral cell use. This article aims to review literature regarding the major known pathways of vitamin A intake from dietary sources into hepatocytes, vitamin A excretion by hepatocytes, as well as vitamin A usage within the retinoid cycle in the RPE and retina to provide insight on future directions of novel membrane transporters for vitamin A in retinal cell physiology and visual function.


1980 ◽  
Vol 43 (3) ◽  
pp. 393-402 ◽  
Author(s):  
Suzanne Large ◽  
G. Neal ◽  
J. Glover ◽  
O. Thanangkul ◽  
R. E. Olson

1. Changes in total retinol-binding protein (RBP), the holoprotein (holoRBP) and prealbumin (PA) concentrations have been monitored in plasma of thirty protein- and vitamin A-deficient preschool children from within a few hours up to 7 weeks after treatment with retinol and a good-quality protein diet.2. The children were classified into groups according to nutritional status as having either kwashiorkor, marasmus-kwashiorkor or marasmus, and given formula diets whose protein and energy contents increased stepwise from 1 g and 105 kJ/kg body-weight respectively up to 4 g and 733 kJ/kg body-weight after 4 weeks. Retinol was administered in the forms of retinyl palmitate either orally or intramuscularly.3. PA and total RBP were determined by electroimmunoassay procedures and the holoRBP by its fluorescence after separation from other plasma proteins.4. RBP in plasma of the vitamin A-deficient child is largely denatured and incapable of binding administered retinol, which must first be taken up by the liver before native holoRBP is released. An increased pool of native apoprotein accumulates in the liver during vitamin A deficiency which is released into plasma quickly after retinol uptake to form peak concentrations of total and holoRBP approximately 3 h after dosing intramuscularly and 6 h orally.5. The accumulated pool of RBP was highest in livers from the marasmus group and lowest in those from the kwashiorkor group, reflecting their relative capacities to synthesize plasma proteins.6. The mean plasma concentrations of total and holoRBP for the various groups were minimal 24–48 h after dosing with retinol and then improved almost linearly over the following week.7. Mean plasma PA concentrations of the various groups on admission were also in order of the severity of their malnutrition. There was little or no change in this protein concentration over the first 24 h after dosing with retinol, but thereafter the mean values rose almost linearly over 2 weeks. Albumin on the other hand changed little during the first week. The results show that PA is the more sensitive measurement of protein nutritional status.


Sign in / Sign up

Export Citation Format

Share Document