Expression of the enhanced green fluorescent protein by herpes simplex virus type 1 (HSV-1) as an in vitro or in vivo marker for virus entry and replication

1998 ◽  
Vol 75 (2) ◽  
pp. 151-160 ◽  
Author(s):  
Timothy P. Foster ◽  
Galena V. Rybachuk ◽  
Konstantin G. Kousoulas
2010 ◽  
Vol 22 (1) ◽  
pp. 373
Author(s):  
M. Reichenbach ◽  
F. A. Habermann ◽  
H. D. Reichenbach ◽  
T. Guengoer ◽  
F. Weber ◽  
...  

An alternative approach to classic techniques for the generation of transgenic livestock is the use of viral vectors. Using lentiviral vectors (LV) we previously generated transgenic founder cattle with integrants carrying phosphoglycerate kinase (PGK) promoter-enhanced green fluorescent protein (eGFP) expression cassettes (Hofmann et al. 2004 Biol. Reprod. 71, 405-409). The aim of this work was to investigate the transmission of LV-PGK-eGFP integrants through the female and male germ line of transgenic founder cattle in resulting embryos, fetuses, and offspring. The female founder animal was superovulated and artificially inseminated with a nontransgenic bull. Six of the 16 embryos obtained were transferred to synchronized recipient heifers, resulting in 2 pregnancies and birth of 1 healthy male transgenic calf, expressing eGFP as detected by in vivo imaging and real-time PCR. Cryopreserved semen of the founder bull and matured COC of nontransgenic cows were used for in vitro embryo production as previously described by Hiendleder et al. (2004 Biol. Reprod. 71, 217-223). The rates of cleavage and development to blastocysts in vitro corresponded to 52.3 ± 3.8% and 23.5 ± 4.6%, respectively. In vivo expression of eGFP was observed at blastocyst stage (Day 7 after IVF) and was seen in 93.8% (198/211) of all blastocysts. Twenty-four eGFP-positive embryos were transferred to 9 synchronized recipients. Analysis of 2 embryos flushed on Day 15, 2 fetuses recovered on Day 45, and a healthy male transgenic calf revealed consistent high-level expression of eGFP in all tissues investigated. These observations show for the first time transmission of lentiviral integrants through the germ line of female and male transgenic founder cattle. Although eGFP transgenic cattle have been produced before by nuclear transfer from transfected cells, lentiviral transgenesis has the advantage that only one copy of the provirus is integrated at a particular chromosomal integration site. High-fidelity expression of eGFP in embryos, fetuses, and offspring of founders provides an interesting tool for developmental studies in cattle, including interactions of gametes, embryos, and fetuses with their maternal environment.


2007 ◽  
Vol 81 (20) ◽  
pp. 11532-11537 ◽  
Author(s):  
Elisa Avitabile ◽  
Cristina Forghieri ◽  
Gabriella Campadelli-Fiume

ABSTRACT The interactions between herpes simplex virus gD and its nectin1 receptor or between gD, gB, and gH were analyzed by complementation of the N and C portions of split enhanced green fluorescent protein (EGFP) fused to the glycoproteins. The gDN-NectC complex was readily detected; the gDN-gCC complex was undetectable, highlighting the specificity of the assay. Split EGFP complementation was detected between proteins designated gDN+gHC, gDN+gBC, and gHN+gBC+wtgD (gB was deleted of endocytosis motifs), both in cells transfected with two-tree glycoproteins and in syncytia. The in situ assay provides evidence that gD interacts with gH and gB independently of each other and supports a model whereby gH and gB in complex exert their activities to gD.


2007 ◽  
Vol 196 (s2) ◽  
pp. S313-S322 ◽  
Author(s):  
Hideki Ebihara ◽  
Steven Theriault ◽  
Gabriele Neumann ◽  
Judie B. Alimonti ◽  
Joan B. Geisbert ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 632
Author(s):  
Yingyun Cai ◽  
Shuiqing Yu ◽  
Ying Fang ◽  
Laura Bollinger ◽  
Yanhua Li ◽  
...  

Simian hemorrhagic fever virus (SHFV) causes acute, lethal disease in macaques. We developed a single-plasmid cDNA-launch infectious clone of SHFV (rSHFV) and modified the clone to rescue an enhanced green fluorescent protein-expressing rSHFV-eGFP that can be used for rapid and quantitative detection of infection. SHFV has a narrow cell tropism in vitro, with only the grivet MA-104 cell line and a few other grivet cell lines being susceptible to virion entry and permissive to infection. Using rSHFV-eGFP, we demonstrate that one cricetid rodent cell line and three ape cell lines also fully support SHFV replication, whereas 55 human cell lines, 11 bat cell lines, and three rodent cells do not. Interestingly, some human and other mammalian cell lines apparently resistant to SHFV infection are permissive after transfection with the rSHFV-eGFP cDNA-launch plasmid. To further demonstrate the investigative potential of the infectious clone system, we introduced stop codons into eight viral open reading frames (ORFs). This approach suggested that at least one ORF, ORF 2b’, is dispensable for SHFV in vitro replication. Our proof-of-principle experiments indicated that rSHFV-eGFP is a useful tool for illuminating the understudied molecular biology of SHFV.


2021 ◽  
Vol 30 ◽  
pp. 096368972097821
Author(s):  
Andrea Tenorio-Mina ◽  
Daniel Cortés ◽  
Joel Esquivel-Estudillo ◽  
Adolfo López-Ornelas ◽  
Alejandro Cabrera-Wrooman ◽  
...  

Human skin contains keratinocytes in the epidermis. Such cells share their ectodermal origin with the central nervous system (CNS). Recent studies have demonstrated that terminally differentiated somatic cells can adopt a pluripotent state, or can directly convert its phenotype to neurons, after ectopic expression of transcription factors. In this article we tested the hypothesis that human keratinocytes can adopt neural fates after culturing them in suspension with a neural medium. Initially, keratinocytes expressed Keratins and Vimentin. After neural induction, transcriptional upregulation of NESTIN, SOX2, VIMENTIN, SOX1, and MUSASHI1 was observed, concomitant with significant increases in NESTIN detected by immunostaining. However, in vitro differentiation did not yield the expression of neuronal or astrocytic markers. We tested the differentiation potential of control and neural-induced keratinocytes by grafting them in the developing CNS of rats, through ultrasound-guided injection. For this purpose, keratinocytes were transduced with lentivirus that contained the coding sequence of green fluorescent protein. Cell sorting was employed to select cells with high fluorescence. Unexpectedly, 4 days after grafting these cells in the ventricles, both control and neural-induced cells expressed green fluorescent protein together with the neuronal proteins βIII-Tubulin and Microtubule-Associated Protein 2. These results support the notion that in vivo environment provides appropriate signals to evaluate the neuronal differentiation potential of keratinocytes or other non-neural cell populations.


2001 ◽  
Vol 44 (S1) ◽  
pp. S339-S341
Author(s):  
K. E. Luker ◽  
G. D. Luker ◽  
C. M. Pica ◽  
J. L. Dahlheimer ◽  
T. J. Fahrner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document