A Methodology for Environmental Radioactivity Monitoring. First Application to the PO River (Northern Italy)

Author(s):  
S. Malcevschi ◽  
L. Guzzi ◽  
G. Qeirazza
2012 ◽  
Vol 55 (4) ◽  
Author(s):  
Lisa Borgatti ◽  
Antonio Edoardo Bracci ◽  
Stefano Cremonini ◽  
Giovanni Martinelli

<p>In 2012, a seismic sequence occurred in the lowlands of the Emilia-Romagna Region (northern Italy), between the borders of the Modena, Ferrara and Bologna Provinces. It consisted of seven mainshocks (5.9 &gt; Ml &gt; 5) that were recorded between May 20 and 29, 2012 [INGV 2012a] and 2,200 minor earthquakes [INGV 2012b]. An interferometric analysis [Bignami et al. 2012, Salvi et al. 2012, this volume] highlighted three main deformation areas, each of which was 12 km wide (from S to N) and 10 km to 20 km long in an ESE-WNW to E-W direction, thus affecting an area of about 600 km2 (Figure 1). Field and aerial geological surveys recorded numerous surficial effects, such as: (i) sediment liquefaction [Crespellani et al. 2012]; (ii) localized ground fissures resembling surficial faulting [Fioravante and Giretti 2012] (Figure 2); (iii) groundwater levels rising up to 400 cm above the local ground level in phreatic wells during the mainshocks (lower values were observed in confined aquifers); and (iv) dormancy of previously known sinkholes [Borgatti et al. 2010, Cremonini 2010a, and references therein]. Some of the observed surface phenomena were previously recorded as coseismic effects during the earthquakes of Ferrara (1570) and Argenta (1624) [Boschi et al. 1995, Galli 2000], together with the early rising of the water level of the Po River in the Stellata section. […]</p>


2021 ◽  
Author(s):  
Iolanda Borzì ◽  
Beatrice Monteleone ◽  
Brunella Bonaccorso ◽  
Mario Martina

&lt;p&gt;Drought economic impacts, even if non-structural, are a significant threat for those sectors highly dependent on water resources. Agricultural production is highly sensitive to extreme weather events such as droughts and heatwaves. &amp;#160;Climate change is expected to exacerbate the frequency and the severity of droughts, as stated by the Intergovernmental Panel on Climate Change (IPCC), which raises concerns about food security for the next decades.&lt;/p&gt;&lt;p&gt;The Food and Agriculture Organization (FAO) estimated that between 2005 and 2015, 83% of all drought-related losses were absorbed by agriculture. The huge monetary losses are mainly due to crop yield reduction because of high temperatures and reduced precipitation, which are linked to additional expenses for field irrigation.&lt;/p&gt;&lt;p&gt;This study aims at estimating the economic impacts of drought on the agricultural sector. The investigation has been carried out for a specific case study area within the Po river basin (Northern Italy). The Po valley is the largest agricultural area in Italy and accounts for 35% of Italian agricultural production. It has experienced multiple droughts over the past 20 years, with the long and severe drought from 2003 to 2008 that caused relevant impacts to the agricultural sector. The total economic impact of the 2005-2007 drought was estimated to be around 1.850M&amp;#8364;. Climate change projections over the Italian peninsula from the PRUDENCE regional experiments showed that the frequency and the severity of droughts in Northern Italy will increase in the next century due to a decrease in precipitation during critical crop growing seasons (spring and summer).&lt;/p&gt;&lt;p&gt;The proposed methodology consists of two steps. At first, farmers have been subjected to surveys for assessing the monetary losses they experienced during past drought events and the cost associated with the mitigation strategies implemented to reduce the economic impacts of the extreme event, with special attention to irrigation practices.&lt;/p&gt;&lt;p&gt;Secondly, the crop growing season and yields have been estimated using the Agricultural Production Systems sIMulator (APSIM), calibrated with local yields retrieved from the Italian National Institute for Statistics (ISTAT) over the period from 2006 to 2020. Weather parameters for simulations in APSIM were derived from remote-sensing images. The comparison between the average growing season and the ones with low yields allows the identification of the crop growing stages that experienced stress. Among the identified stresses, the ones related to water shortages are considered. The economic costs associated with agricultural practices are computed to obtain an estimation of farmers' expenses. Besides, farmers' income is computed based on crop prices and simulated yield. The reduced income obtained by farmers during the previously identified water-related stresses represents their loss due to drought.&lt;/p&gt;&lt;p&gt;Results reveal that the use of the developed methodology to identify drought stress in combination with the information coming from surveys helps in quickly assessing the economic impacts of past and present droughts in the Po river basin and represents a useful tool to evaluate which cultivations and which areas suffered the highest economic impacts of droughts.&lt;/p&gt;


Solid Earth ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 931-949 ◽  
Author(s):  
Peter Klin ◽  
Giovanna Laurenzano ◽  
Maria Adelaide Romano ◽  
Enrico Priolo ◽  
Luca Martelli

Abstract. During the 2012 seismic sequence of the Emilia region (northern Italy), the earthquake ground motion in the epicentral area featured longer duration and higher velocity than those estimated by empirical-based prediction equations typically adopted in Italy. In order to explain these anomalies, we (1) build up a structural and geophysical 3-D digital model of the crustal sector involved in the sequence, (2) reproduce the earthquake ground motion at some seismological stations through physics-based numerical simulations and (3) compare the observed recordings with the simulated ones. In this way, we investigate how the earthquake ground motion in the epicentral area is influenced by local stratigraphy and geological structure buried under the Po Plain alluvium. Our study area covers approximately 5000 km2 and extends from the right Po River bank to the Northern Apennine morphological margin in the N–S direction, and between the two chief towns of Reggio Emilia and Ferrara in the W–E direction, involving a crustal volume of 20 km thickness. We set up the 3-D model by using already-published geological and geophysical data, with details corresponding to a map at scale of 1:250 000. The model depicts the stratigraphic and tectonic relationships of the main geological formations, the known faults and the spatial pattern of the seismic properties. Being a digital vector structure, the 3-D model can be easily modified or refined locally for future improvements or applications. We exploit high-performance computing to perform numerical simulations of the seismic wave propagation in the frequency range up to 2 Hz. In order to get rid of the finite source effects and validate the model response, we choose to reproduce the ground motion related to two moderate-size aftershocks of the 2012 Emilia sequence that were recorded by a large number of stations. The obtained solutions compare very well to the recordings available at about 30 stations in terms of peak ground velocity and signal duration. Snapshots of the simulated wavefield allow us to attribute the exceptional length of the observed ground motion to surface wave overtones that are excited in the alluvial basin by the buried ridge of the Mirandola anticline. Physics-based simulations using realistic 3-D geomodels show eventually to be effective for assessing the local seismic response and the seismic hazard in geologically complex areas.


2011 ◽  
Vol 27 (2) ◽  
pp. 177-187 ◽  
Author(s):  
Alex Laini ◽  
Marco Bartoli ◽  
Simona Castaldi ◽  
Pierluigi Viaroli ◽  
Ettore Capri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document