Critical analysis of the field determination of soil hydraulic conductivity functions using the flux-gradient approach

1998 ◽  
Vol 48 (1-2) ◽  
pp. 81-89 ◽  
Author(s):  
K Reichardt ◽  
O Portezan ◽  
P.L Libardi ◽  
O.O.S Bacchi ◽  
S.O Moraes ◽  
...  
Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 941 ◽  
Author(s):  
Matej Radinja ◽  
Ines Vidmar ◽  
Nataša Atanasova ◽  
Matjaž Mikoš ◽  
Mojca Šraj

Soil hydraulic conductivity has a direct influence on infiltration rate, which is of great importance for modelling and design of surface runoff and stormwater control measures. In this study, three measuring techniques for determination of soil hydraulic conductivity were compared in an urban catchment in Ljubljana, Slovenia. Double ring (DRI) and dual head infiltrometer (DHI) were applied to measure saturated hydraulic conductivity (Ks) and mini disk infiltrometer (MDI) was applied to measure unsaturated hydraulic conductivity (K), which was recalculated in Ks in order to compare the results. Results showed significant differences between investigated techniques, namely DHI showed 6.8 times higher values of Ks in comparison to DRI. On the other hand, Ks values obtained by MDI and DRI exhibited the lowest difference. MDI measurements in 12 locations of the small plot pointed to the spatial variability of K ranging between 73%–89% as well as to temporal variability within a single location of 27%–99%. Additionally, a reduction of K caused by the effect of drought-induced water repellency was observed. Moreover, results indicate that hydrological models could be enhanced using different scenarios by employing a range of K values based on soil conditions.


1993 ◽  
Vol 50 (1) ◽  
pp. 151-153 ◽  
Author(s):  
K. Reichardt

It is theoretically shown that unit hydraulic potential gradients cannot occur in homogeneous soils undegoing internal drainage process even though this assumption has been used successfully by several authors of soil hydraulic conductivity methods.


Soil Research ◽  
2013 ◽  
Vol 51 (1) ◽  
pp. 23 ◽  
Author(s):  
Mohammad Reza Neyshabouri ◽  
Mehdi Rahmati ◽  
Claude Doussan ◽  
Boshra Behroozinezhad

Unsaturated soil hydraulic conductivity K is a fundamental transfer property of soil but its measurement is costly, difficult, and time-consuming due to its large variations with water content (θ) or matric potential (h). Recently, C. Doussan and S. Ruy proposed a method/model using measurements of the electrical conductivity of soil core samples to predict K(h). This method requires the measurement or the setting of a range of matric potentials h in the core samples—a possible lengthy process requiring specialised devices. To avoid h estimation, we propose to simplify that method by introducing the particle-size distribution (PSD) of the soil as a proxy for soil pore diameters and matric potentials, with the Arya and Paris (AP) model. Tests of this simplified model (SM) with laboratory data on a broad range of soils and using the AP model with available, previously defined parameters showed that the accuracy was lower for the SM than for the original model (DR) in predicting K (RMSE of logK = 1.10 for SM v. 0.30 for DR; K in m s–1). However, accuracy was increased for SM when considering coarse- and medium-textured soils only (RMSE of logK = 0.61 for SM v. 0.26 for DR). Further tests with 51 soils from the UNSODA database and our own measurements, with estimated electrical properties, confirmed good agreement of the SM for coarse–medium-textured soils (<35–40% clay). For these textures, the SM also performed well compared with the van Genuchten–Mualem model. Error analysis of SM results and fitting of the AP parameter showed that most of the error for fine-textured soils came from poorer adequacy of the AP model’s previously defined parameters for defining the water retention curve, whereas this was much less so for coarse-textured soils. The SM, using readily accessible soil data, could be a relatively straightforward way to estimate, in situ or in the laboratory, K(h) for coarse–medium-textured soils. This requires, however, a prior check of the predictive efficacy of the AP model for the specific soil investigated, in particular for fine-textured/structured soils and when using previously defined AP parameters.


1980 ◽  
Vol 44 (1) ◽  
pp. 3-7 ◽  
Author(s):  
P. L. Libardi ◽  
K. Reichardt ◽  
D. R. Nielsen ◽  
J. W. Biggar

2019 ◽  
Vol 232 ◽  
pp. 1021-1027 ◽  
Author(s):  
P.A. Plaza-Álvarez ◽  
M.E. Lucas-Borja ◽  
J. Sagra ◽  
D.A. Zema ◽  
J. González-Romero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document