IN SITU MEASUREMENTS OF SOIL HYDRAULIC CONDUCTIVITY USING POINT APPLICATION OF WATER

1998 ◽  
Vol 14 (2) ◽  
pp. 115-120 ◽  
Author(s):  
M. Yitayew ◽  
A. A. Khan ◽  
A. W. Warrick
2009 ◽  
Vol 27 (5) ◽  
pp. 595-606 ◽  
Author(s):  
B. Hanumantha Rao ◽  
V. Sridhar ◽  
R. R. Rakesh ◽  
D. N. Singh ◽  
P. K. Narayan ◽  
...  

Author(s):  
Jose Antonio Gutierrez Gnecchi ◽  
Alberto Gomez-Tagle ◽  
Philippe Lobit ◽  
Adriana Tellez ◽  
Arturo Mendez ◽  
...  

Soil Research ◽  
2006 ◽  
Vol 44 (7) ◽  
pp. 719 ◽  
Author(s):  
Tony Wells ◽  
Stephen Fityus ◽  
David W. Smith ◽  
Hlwan Moe

A comprehensive knowledge of soil hydraulic conductivity is essential when modelling the distribution of soil moisture within soil profiles and across catchments. The high spatial variability of soil hydraulic conductivity, however, necessitates the taking of many in situ measurements, which are costly, time-consuming, and labour-intensive. This paper presents an improved method for indirectly determining the saturated hydraulic conductivity of granular materials via an in situ gas flow technique. The apparatus employed consists of a cylindrical tube which is embedded in the soil to a prescribed depth. Nitrogen at a range of pressures was supplied to the tube and allowed to escape by permeating through the soil. A 3-dimensional, axisymmetric, steady-state, finite element flow model was then used to determine the value of the soil intrinsic gas permeability which produces the best fit to the pressure–air flow data. Saturated hydraulic conductivities estimated from the application of the gas flow technique to 5 granular soils covering a wide range of permeabilities were in close agreement with values determined using a conventional permeameter. The results of this preliminary study demonstrate the potential of this approach to the indirect determination of saturated hydraulic conductivity based on measurement of gas flow rates in granular and structured soils.


Soil Research ◽  
1987 ◽  
Vol 25 (1) ◽  
pp. 1 ◽  
Author(s):  
MA Rab ◽  
ST Willatt ◽  
KA Olsson

The hydraulic conductivity characteristics of a duplex soil profile were determined in the field from in situ measurements. For a given soil water suction, hydraulic conductivity of the subsoil was generally lower than the surface soil. Hydraulic conductivity characteristics calculated using the equations of Marshall and Millington and Quirk were in good agreement with field-measured hydraulic conductivity after matching at low soil water suctions. Implications of hydraulic properties for crop production and water management are noted.


Soil Research ◽  
2013 ◽  
Vol 51 (1) ◽  
pp. 23 ◽  
Author(s):  
Mohammad Reza Neyshabouri ◽  
Mehdi Rahmati ◽  
Claude Doussan ◽  
Boshra Behroozinezhad

Unsaturated soil hydraulic conductivity K is a fundamental transfer property of soil but its measurement is costly, difficult, and time-consuming due to its large variations with water content (θ) or matric potential (h). Recently, C. Doussan and S. Ruy proposed a method/model using measurements of the electrical conductivity of soil core samples to predict K(h). This method requires the measurement or the setting of a range of matric potentials h in the core samples—a possible lengthy process requiring specialised devices. To avoid h estimation, we propose to simplify that method by introducing the particle-size distribution (PSD) of the soil as a proxy for soil pore diameters and matric potentials, with the Arya and Paris (AP) model. Tests of this simplified model (SM) with laboratory data on a broad range of soils and using the AP model with available, previously defined parameters showed that the accuracy was lower for the SM than for the original model (DR) in predicting K (RMSE of logK = 1.10 for SM v. 0.30 for DR; K in m s–1). However, accuracy was increased for SM when considering coarse- and medium-textured soils only (RMSE of logK = 0.61 for SM v. 0.26 for DR). Further tests with 51 soils from the UNSODA database and our own measurements, with estimated electrical properties, confirmed good agreement of the SM for coarse–medium-textured soils (<35–40% clay). For these textures, the SM also performed well compared with the van Genuchten–Mualem model. Error analysis of SM results and fitting of the AP parameter showed that most of the error for fine-textured soils came from poorer adequacy of the AP model’s previously defined parameters for defining the water retention curve, whereas this was much less so for coarse-textured soils. The SM, using readily accessible soil data, could be a relatively straightforward way to estimate, in situ or in the laboratory, K(h) for coarse–medium-textured soils. This requires, however, a prior check of the predictive efficacy of the AP model for the specific soil investigated, in particular for fine-textured/structured soils and when using previously defined AP parameters.


1980 ◽  
Vol 44 (1) ◽  
pp. 3-7 ◽  
Author(s):  
P. L. Libardi ◽  
K. Reichardt ◽  
D. R. Nielsen ◽  
J. W. Biggar

Sign in / Sign up

Export Citation Format

Share Document