Theoretical Determination of the Kinetic Parameters of a Reaction Intermediate by Degeneration of the Precursor Process

Author(s):  
M. Elkhatib ◽  
C. Duriche ◽  
R. Metz ◽  
J.R. Vignalou ◽  
H. Delalu
1970 ◽  
Vol 65 (1_Suppl) ◽  
pp. S104-S121 ◽  
Author(s):  
E. E. Baulieu ◽  
J. P. Raynaud ◽  
E. Milgrom

ABSTRACT A brief review of the characteristics of steroid binding proteins found in the plasma and in some target organs is presented, followed by some general remarks on binding »specificity« and binding parameters. Useful techniques for measuring binding parameters at equilibrium are reported, both those which keep the equilibrium intact and those which implicate its disruption. A concept is developed according to which the determination of a specific steroid binding protein is based on the »differential dissociation« of the several steroid binding complexes present in most biological mixtures. Methods which allow determination of the kinetic parameters of the binding systems are also presented. Various representations of the binding and therefore different modes of graphic representation and calculation are discussed, including the recent »proportion graph« method.


1997 ◽  
Vol 62 (10) ◽  
pp. 1511-1526
Author(s):  
María-Luisa Alcaraz ◽  
Ángela Molina

A theoretical study of the potential-time response to sinusoidal current applied to static and dynamic electrodes for regeneration processes is presented. Methods for determination of the regeneration fraction, rate constant of the chemical reaction and heterogeneous kinetic parameters are proposed.


1991 ◽  
Vol 32 (8) ◽  
pp. 1311-1323
Author(s):  
KG Parhofer ◽  
P Hugh ◽  
R Barrett ◽  
DM Bier ◽  
G Schonfeld

2011 ◽  
Vol 89 (1) ◽  
pp. 103-107 ◽  
Author(s):  
J.-Ph. Karr ◽  
L. Hilico ◽  
V. I. Korobov

High resolution ro-vibrational spectroscopy of H 2+ or HD+ can lead to a significantly improved determination of the electron to proton mass ratio me/mp if the theoretical determination of transition frequencies becomes sufficiently accurate. We report on recent theoretical progress in the description of the hyperfine structure of H 2+ , as well as first steps in the evaluation of radiative corrections at order mα7. Completion of the latter calculation should allow us to reach the projected 10−10 accuracy level and open the road to mass ratio determination.


Sign in / Sign up

Export Citation Format

Share Document