Determination of intrinsic monod kinetic parameters for two heterotrophic tetrachloroethene (PCE)-respiring strains and insight into their application

2009 ◽  
Vol 104 (2) ◽  
pp. 301-311 ◽  
Author(s):  
Deyang Huang ◽  
Jennifer G. Becker
1970 ◽  
Vol 65 (1_Suppl) ◽  
pp. S104-S121 ◽  
Author(s):  
E. E. Baulieu ◽  
J. P. Raynaud ◽  
E. Milgrom

ABSTRACT A brief review of the characteristics of steroid binding proteins found in the plasma and in some target organs is presented, followed by some general remarks on binding »specificity« and binding parameters. Useful techniques for measuring binding parameters at equilibrium are reported, both those which keep the equilibrium intact and those which implicate its disruption. A concept is developed according to which the determination of a specific steroid binding protein is based on the »differential dissociation« of the several steroid binding complexes present in most biological mixtures. Methods which allow determination of the kinetic parameters of the binding systems are also presented. Various representations of the binding and therefore different modes of graphic representation and calculation are discussed, including the recent »proportion graph« method.


1997 ◽  
Vol 62 (10) ◽  
pp. 1511-1526
Author(s):  
María-Luisa Alcaraz ◽  
Ángela Molina

A theoretical study of the potential-time response to sinusoidal current applied to static and dynamic electrodes for regeneration processes is presented. Methods for determination of the regeneration fraction, rate constant of the chemical reaction and heterogeneous kinetic parameters are proposed.


Author(s):  
Isabel Abad-Álvaro ◽  
Diego Leite ◽  
Dorota Bartczak ◽  
Susana Cuello ◽  
Beatriz Gomez-Gomez ◽  
...  

Toxicological studies concerning nanomaterials in complex biological matrices usually require a carefully designed workflow that involves handling, transportation and preparation of a large number of samples without affecting the nanoparticle...


1991 ◽  
Vol 32 (8) ◽  
pp. 1311-1323
Author(s):  
KG Parhofer ◽  
P Hugh ◽  
R Barrett ◽  
DM Bier ◽  
G Schonfeld

Author(s):  
Olga Wronikowska ◽  
Maria Zykubek ◽  
Agnieszka Michalak ◽  
Anna Pankowska ◽  
Paulina Kozioł ◽  
...  

AbstractMephedrone is a widely used drug of abuse, exerting its effects by interacting with monoamine transporters. Although this mechanism has been widely studied heretofore, little is known about the involvement of glutamatergic transmission in mephedrone effects. In this study, we comprehensively evaluated glutamatergic involvement in rewarding effects of mephedrone using an interdisciplinary approach including (1) behavioural study on effects of memantine (non-selective NMDA antagonist) on expression of mephedrone-induced conditioned place preference (CPP) in rats; (2) evaluation of glutamate concentrations in the hippocampus of rats following 6 days of mephedrone administration, using in vivo magnetic resonance spectroscopy (MRS); and (3) determination of glutamate levels in the hippocampus of rats treated with mephedrone and subjected to MRS, using ion-exchange chromatography. In the presented research, we confirmed priorly reported mephedrone-induced rewarding effects in the CPP paradigm and showed that memantine (5 mg/kg) was able to reverse the expression of this effect. MRS study showed that subchronic mephedrone administration increased glutamate level in the hippocampus when measured in vivo 24 h (5 mg/kg, 10 mg/kg and 20 mg/kg) and 2 weeks (5 mg/kg and 20 mg/kg) after last injection. Ex vivo chromatographic analysis did not show significant changes in hippocampal glutamate concentrations; however, it showed similar results as obtained in the MRS study proving its validity. Taken together, the presented study provides new insight into glutamatergic involvement in rewarding properties of mephedrone.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 930
Author(s):  
Fahimeh Hadavimoghaddam ◽  
Mehdi Ostadhassan ◽  
Ehsan Heidaryan ◽  
Mohammad Ali Sadri ◽  
Inna Chapanova ◽  
...  

Dead oil viscosity is a critical parameter to solve numerous reservoir engineering problems and one of the most unreliable properties to predict with classical black oil correlations. Determination of dead oil viscosity by experiments is expensive and time-consuming, which means developing an accurate and quick prediction model is required. This paper implements six machine learning models: random forest (RF), lightgbm, XGBoost, multilayer perceptron (MLP) neural network, stochastic real-valued (SRV) and SuperLearner to predict dead oil viscosity. More than 2000 pressure–volume–temperature (PVT) data were used for developing and testing these models. A huge range of viscosity data were used, from light intermediate to heavy oil. In this study, we give insight into the performance of different functional forms that have been used in the literature to formulate dead oil viscosity. The results show that the functional form f(γAPI,T), has the best performance, and additional correlating parameters might be unnecessary. Furthermore, SuperLearner outperformed other machine learning (ML) algorithms as well as common correlations that are based on the metric analysis. The SuperLearner model can potentially replace the empirical models for viscosity predictions on a wide range of viscosities (any oil type). Ultimately, the proposed model is capable of simulating the true physical trend of the dead oil viscosity with variations of oil API gravity, temperature and shear rate.


Author(s):  
Sean Keane ◽  
Karmun Cheng ◽  
Kaitlyn Korol

In-line inspection (ILI) tools play an important role within integrity management and substantial investment is made to continuously advance performance of the existing technologies and, where necessary, to develop new technologies. Performance measurement is typically focused for the purpose of understanding the measured performance in relation to the ILI vendor specification and for the determination of residual uncertainty regarding pipeline integrity. These performance measures may not provide the necessary insight into what type of investment into a technology is necessary to further reduce residual uncertainty regarding pipeline integrity, and beyond that, what investment, as an operator, results in an effective and efficient reduction in uncertainty. The paper proposes a reliability based approach for investigating uncertainty associated with ultrasonic crack ILI technology for the purpose of identifying efficient investment into the technology that results in an effective and measurable improvement. Typical performance measures and novel performance measurement methods are presented and reviewed with respect to what information they can provide to assist in investment decisions. Finally, general observations are made regarding Enbridge’s experience using ultrasonic crack ILI technology and areas currently being investigated.


Sign in / Sign up

Export Citation Format

Share Document