Hydrodynamic Analysis of a Novel Photocatalytic Reactor Using Computational Fluid Dynamics

Author(s):  
Shane J. Cox ◽  
Adesoji A. Adesina
Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 204
Author(s):  
Kamran Fouladi ◽  
David J. Coughlin

This report presents the development of a fluid-structure interaction model using commercial Computational fluid dynamics software and in-house developed User Defined Function to simulate the motion of a trout Department of Mechanical Engineering, Widener University holding station in a moving water stream. The oscillation model used in this study is based on the observations of trout swimming in a respirometry tank in a laboratory experiment. The numerical simulations showed results that are consistent with laboratory observations of a trout holding station in the tank without obstruction and trout entrained to the side of the cylindrical obstruction. This paper will be helpful in the development of numerical models for the hydrodynamic analysis of bioinspired unmanned underwater vehicle systems.


2021 ◽  
Author(s):  
Ming Chen ◽  
Solomon Yim ◽  
Daniel Cox ◽  
Zhaoqing Yang ◽  
Thomas Mumford

2019 ◽  
Vol XXII (1) ◽  
pp. 220-230
Author(s):  
Gürsel K. T.

This study is related to the design features of pontoon boats that enjoy an increasing market share in global recreational boat industry. In this investigation, a representative pontoon boat with three cylindrical buoyancy elements was taken as the model to be studied. Afterwards, the buoyancy elements were improved to optimize hydrodynamic properties using a computational fluid dynamics package. The objective functions were the total hydrodynamic resistance of the boat and the distribution of the turbulence viscosity and total pressure on the hulls. By means of the obtained results, the powering requirements were estimated both for a service speed and for a maximum speed as well as findings were discussed.


Energies ◽  
2013 ◽  
Vol 6 (5) ◽  
pp. 2362-2385 ◽  
Author(s):  
Vincenzo Sammartano ◽  
Costanza Aricò ◽  
Armando Carravetta ◽  
Oreste Fecarotta ◽  
Tullio Tucciarelli

2014 ◽  
Vol 37 (3) ◽  
pp. 383-391 ◽  
Author(s):  
Jinsheng Sun ◽  
Xubo Luo ◽  
Shuo Jiang ◽  
Wenping Wang ◽  
Hao Lyu ◽  
...  

2015 ◽  
Vol 31 (1) ◽  
pp. 48-55 ◽  
Author(s):  
J. Paulo Vilas-Boas ◽  
Rui J. Ramos ◽  
Ricardo J. Fernandes ◽  
António J. Silva ◽  
Abel I. Rouboa ◽  
...  

The aim of this research was to numerically clarify the effect of finger spreading and thumb abduction on the hydrodynamic force generated by the hand and forearm during swimming. A computational fluid dynamics (CFD) analysis of a realistic hand and forearm model obtained using a computer tomography scanner was conducted. A mean flow speed of 2 m·s−1was used to analyze the possible combinations of three finger positions (grouped, partially spread, totally spread), three thumb positions (adducted, partially abducted, totally abducted), three angles of attack (a = 0°, 45°, 90°), and four sweepback angles (y = 0°, 90°, 180°, 270°) to yield a total of 108 simulated situations. The values of the drag coefficient were observed to increase with the angle of attack for all sweepback angles and finger and thumb positions. For y = 0° and 180°, the model with the thumb adducted and with the little finger spread presented higher drag coefficient values for a = 45° and 90°. Lift coefficient values were observed to be very low at a = 0° and 90° for all of the sweepback angles and finger and thumb positions studied, although very similar values are obtained at a = 45°. For y = 0° and 180°, the effect of finger and thumb positions appears to be much most distinct, indicating that having the thumb slightly abducted and the fingers grouped is a preferable position at y = 180°, whereas at y = 0°, having the thumb adducted and fingers slightly spread yielded higher lift values. Results show that finger and thumb positioning in swimming is a determinant of the propulsive force produced during swimming; indeed, this force is dependent on the direction of the flow over the hand and forearm, which changes across the arm’s stroke.


Sign in / Sign up

Export Citation Format

Share Document