scholarly journals Banki-Michell Optimal Design by Computational Fluid Dynamics Testing and Hydrodynamic Analysis

Energies ◽  
2013 ◽  
Vol 6 (5) ◽  
pp. 2362-2385 ◽  
Author(s):  
Vincenzo Sammartano ◽  
Costanza Aricò ◽  
Armando Carravetta ◽  
Oreste Fecarotta ◽  
Tullio Tucciarelli
Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 204
Author(s):  
Kamran Fouladi ◽  
David J. Coughlin

This report presents the development of a fluid-structure interaction model using commercial Computational fluid dynamics software and in-house developed User Defined Function to simulate the motion of a trout Department of Mechanical Engineering, Widener University holding station in a moving water stream. The oscillation model used in this study is based on the observations of trout swimming in a respirometry tank in a laboratory experiment. The numerical simulations showed results that are consistent with laboratory observations of a trout holding station in the tank without obstruction and trout entrained to the side of the cylindrical obstruction. This paper will be helpful in the development of numerical models for the hydrodynamic analysis of bioinspired unmanned underwater vehicle systems.


2021 ◽  
Author(s):  
Ming Chen ◽  
Solomon Yim ◽  
Daniel Cox ◽  
Zhaoqing Yang ◽  
Thomas Mumford

2012 ◽  
Vol 499 ◽  
pp. 120-125 ◽  
Author(s):  
Zhi Peng Tang ◽  
Ying Xue Yao ◽  
Liang Zhou ◽  
Q. Yao

In order to enhance the efficiency of the Savonius rotor, this paper designs a new type of Savonius rotor with a rectifier. By using Computational Fluid Dynamics software to simulate and optimize the various parameters which affect the efficiency of the rotor. The sliding mesh method is applied here. The Cp-λ curves of wind turbine with different structural parameters are obtained after numerical simulation of flow field. On this basis, this paper gets the optimal structural parameters. And the results indicated that this new type of Savonius rotor has great improvement of efficiency compared with the traditional Savonius-type rotor.


2019 ◽  
Vol XXII (1) ◽  
pp. 220-230
Author(s):  
Gürsel K. T.

This study is related to the design features of pontoon boats that enjoy an increasing market share in global recreational boat industry. In this investigation, a representative pontoon boat with three cylindrical buoyancy elements was taken as the model to be studied. Afterwards, the buoyancy elements were improved to optimize hydrodynamic properties using a computational fluid dynamics package. The objective functions were the total hydrodynamic resistance of the boat and the distribution of the turbulence viscosity and total pressure on the hulls. By means of the obtained results, the powering requirements were estimated both for a service speed and for a maximum speed as well as findings were discussed.


Sign in / Sign up

Export Citation Format

Share Document