74 Effects of combination therapy with the VEGF receptor tyrosinekinase inhibitor PTK/ZK222584 and ionizing radiation on endothelial cell proliferation and tumor growth control

2001 ◽  
Vol 60 ◽  
pp. S19
2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Luke Hoeppner ◽  
Sutapa Sinha ◽  
Ying Wang ◽  
Resham Bhattacharya ◽  
Shamit Dutta ◽  
...  

Vascular permeability factor/vascular endothelial growth factor A (VEGF) is a central regulator of angiogenesis and potently promotes vascular permeability. VEGF plays a key role in the pathologies of heart disease, stroke, and cancer. Therefore, understanding the molecular regulation of VEGF signaling is an important pursuit. Rho GTPase proteins play various roles in vasculogenesis and angiogenesis. While the functions of RhoA and RhoB in these processes have been well defined, little is known about the role of RhoC in VEGF-mediated signaling in endothelial cells and vascular development. Here, we describe how RhoC modulates VEGF signaling to regulate endothelial cell proliferation, migration and permeability. We found VEGF stimulation activates RhoC in human umbilical vein endothelial cells (HUVECs), which was completely blocked after VEGF receptor 2 (VEGFR-2) knockdown indicating that VEGF activates RhoC through VEGFR-2 signaling. Interestingly, RhoC knockdown delayed the degradation of VEGFR-2 compared to control siRNA treated HUVECs, thus implicating RhoC in VEGFR-2 trafficking. In light of our results suggesting VEGF activates RhoC through VEGFR-2, we sought to determine whether RhoC regulates vascular permeability through the VEGFR-2/phospholipase Cγ (PLCγ) /Ca 2+ /eNOS cascade. We found RhoC knockdown in VEGF-stimulated HUVECs significantly increased PLC-γ1 phosphorylation at tyrosine 783, promoted basal and VEGF-stimulated eNOS phophorylation at serine 1177, and increased calcium flux compared with control siRNA transfected HUVECs. Taken together, our findings suggest RhoC negatively regulates VEGF-induced vascular permeability. We confirmed this finding through a VEGF-inducible zebrafish model of vascular permeability by observing significantly greater vascular permeability in RhoC morpholino (MO)-injected zebrafish than control MO-injected zebrafish. Furthermore, we showed that RhoC promotes endothelial cell proliferation and negatively regulates endothelial cell migration. Our data suggests a scenario in which RhoC promotes proliferation by upregulating -catenin in a Wnt signaling-independent manner, which in turn, promotes Cyclin D1 expression and subsequently drives cell cycle progression.


2019 ◽  
Vol 317 (1) ◽  
pp. G57-G66 ◽  
Author(s):  
Xiaocai Yan ◽  
Elizabeth Managlia ◽  
Xiao-Di Tan ◽  
Isabelle G. De Plaen

Prenatal inflammation is a risk factor for necrotizing enterocolitis (NEC), and it increases intestinal injury in a rat NEC model. We previously showed that maldevelopment of the intestinal microvasculature and lack of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) signaling play a role in experimental NEC. However, whether prenatal inflammation affects the intestinal microvasculature remains unknown. In this study, mouse dams were injected intraperitoneally with lipopolysaccharide (LPS) or saline at embryonic day 17. Neonatal intestinal microvasculature density, endothelial cell proliferation, and intestinal VEGF-A and VEGFR2 proteins were assessed in vivo. Maternal and fetal serum TNF concentrations were measured by ELISA. The impact of TNF on the neonatal intestinal microvasculature was examined in vitro and in vivo, and we determined whether prenatal LPS injection exacerbates experimental NEC via TNF. Here we found that prenatal LPS injection significantly decreased intestinal microvascular density, endothelial cell proliferation, and VEGF and VEGFR2 protein expression in neonatal mice. Prenatal LPS injection increased maternal and fetal serum levels of TNF. TNF decreased VEGFR2 protein in vitro in neonatal endothelial cells. Postnatal TNF administration in vivo decreased intestinal microvasculature density, endothelial cell proliferation, and VEGF and VEGFR2 protein expression and increased the incidence of severe NEC. These effects were ameliorated by stabilizing hypoxia-inducible factor-1α, the master regulator of VEGF. Furthermore, prenatal LPS injection significantly increased the incidence of severe NEC in our model, and the effect was dependent on endogenous TNF. Our study suggests that prenatal inflammation increases the susceptibility to NEC, downregulates intestinal VEGFR2 signaling, and affects perinatal intestinal microvascular development via a TNF mechanism. NEW & NOTEWORTHY This report provides new evidence that maternal inflammation decreases neonatal intestinal VEGF receptor 2 signaling and endothelial cell proliferation, impairs intestinal microvascular development, and predisposes neonatal mouse pups to necrotizing enterocolitis (NEC) through inflammatory cytokines such as TNF. Our data suggest that alteration of intestinal microvascular development may be a key mechanism by which premature infants exposed to prenatal inflammation are at risk for NEC and preserving the VEGF/VEGF receptor 2 signaling pathway may help prevent NEC development.


1996 ◽  
Vol 19 (6) ◽  
pp. 466
Author(s):  
L K Shawer ◽  
G McMahon ◽  
C Tang ◽  
L Sun ◽  
H App ◽  
...  

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Anastasia Gorelova ◽  
Sanghamitra Sahoo ◽  
Patrick J Pagano

Pulmonary arterial hypertension (PAH) is a poorly characterized disease of unclear etiology that affects individuals of all ages. Vascular remodeling and increase in pulmonary artery (PA) and right ventricle (RV) pressures are two major culprits in RV failure and death in PAH. Recent advances in the study of PAH suggest that endothelial cell proliferation is an early instigator of this hallmark remodeling. We postulated that Axl receptor tyrosine kinase (implicated in pro-proliferative and pro-survival signaling in cancerous cells) could mediate endothelial proliferation and thus hemodynamic changes occurring in PAH. Using immunofluorescent microscopy of lung microvessels of human PAH vs. non-PAH, we observed Axl expression on intimal endothelial cells but not medial smooth muscle cells. Furthermore, digitized microscopy revealed that Axl tended to increase on the endothelium of PAH vessels (1.65±0.15-fold vs. non-PAH; n=3-4; p=0.057 ). To address the role of Axl in vivo , an Axl inhibitor R428 was employed in a mouse model of pulmonary hypertension. C57Bl/6 mice were subjected to hypoxia at pO 2 =10% and VEGF receptor antagonist SU5416 (Su/Ch) or normoxia (Norm) for 3 wks. Indeed, Su/Ch caused a significant rise in lung Axl protein and mRNA (7.1±0.4- and 2.4±0.5-fold, Su/Ch vs. Norm, protein and mRNA, respectively; n=3-6; p<0.01). As predicted, RV pressure (RVP) rose from 27±0.5 to 43±1.8 mmHg (Norm vs. Su/Ch; n=6; p<0.01). However, we did not observe a decrease in RVP with twice-daily gavage of 75 mg/kg R428 (43±1.4 mmHg, Su/Ch + R428; n=6). A similar pattern was observed with mean PA pressure (18.4±0.3 and 28.7±1.2 mmHg, Norm vs. Su/Ch, p<0.01; 28.7±0.9 mmHg, Su/Ch + R428), RV resistance (1403±256 vs. 2703±464 Wood units, Norm vs. Su/Ch, n/s; vs. 3610±625 Wood units, Su/Ch + R428) and Fulton index (0.26±0.01 and 0.34±0.02, Norm vs. Su/Ch, p<0.05; 0.38±0.02, Su/Ch + R428). In conclusion, our preliminary results demonstrate upregulated Axl expression in the endothelium of PAH patients and in lungs of PH mice and suggest that Axl kinase may play a novel role in pulmonary vascular endothelial proliferation and remodeling in PAH. It remains to be determined whether drug bioavailability or severity of disease precluded an ameliorative effect of an Axl inhibitor.


2003 ◽  
Vol 312 (3) ◽  
pp. 801-805 ◽  
Author(s):  
Guo-An He ◽  
Jin-Xian Luo ◽  
Tian-Yuan Zhang ◽  
Fang-Yu Wang ◽  
Rui-Fang Li

Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 168 ◽  
Author(s):  
Yi-Ting Lin ◽  
Shu-Man Liang ◽  
Ya-Ju Wu ◽  
Yi-Ju Wu ◽  
Yi-Jhu Lu ◽  
...  

Focal adhesion kinase (FAK) plays an important role in vascular development, including the regulation of endothelial cell (EC) adhesion, migration, proliferation, and survival. 3’-deoxyadenosine (cordycepin) is known to suppress FAK expression, cell migration, and the epithelial–mesenchymal transition in hepatocellular carcinoma (HCC). However, whether cordycepin affects FAK expression and cellular functions in ECs and the specific molecular mechanism remain unclear. In this study, we found that cordycepin suppressed FAK expression and the phosphorylation of FAK (p-FAK) at Tyr397 in ECs. Cordycepin inhibited the proliferation, wound healing, transwell migration, and tube formation of ECs. Confocal microscopy revealed that cordycepin significantly reduced FAK expression and decreased focal adhesion number of ECs. The suppressed expression of FAK was accompanied by induced p53 and p21 expression in ECs. Finally, we demonstrated that cordycepin suppressed angiogenesis in an in vivo angiogenesis assay and reduced HCC tumor growth in a xenograft nude mice model. Our study indicated that cordycepin could attenuate cell proliferation and migration and may result in the impairment of the angiogenesis process and tumor growth via downregulation of FAK and induction of p53 and p21 in ECs. Therefore, cordycepin may be used as a potential adjuvant for cancer therapy.


Blood ◽  
1999 ◽  
Vol 94 (7) ◽  
pp. 2461-2468 ◽  
Author(s):  
Sandra E. Pike ◽  
Lei Yao ◽  
Joyce Setsuda ◽  
Karen D. Jones ◽  
Barry Cherney ◽  
...  

Several angiogenesis inhibitors are fragments of larger proteins that are themselves not active as angiogenesis inhibitors. Vasostatin, the N-terminal domain of calreticulin inclusive of amino acids 1-180, is an angiogenesis inhibitor that exerts antitumor effects in vivo. In the present study, we examined whether the full-length calreticulin molecule shares the antiangiogenic and antitumor activities of vasostatin. Similar to vasostatin, calreticulin selectively inhibited endothelial cell proliferation in vitro, but not cells of other lineages, and suppressed angiogenesis in vivo. When inoculated into athymic mice, calreticulin inhibited Burkitt tumor growth comparably with vasostatin. Calreticulin lacking the N-terminal 1-120 amino acids inhibited endothelial cell proliferation in vitro and Burkitt tumor growth in vivo comparably with vasostatin. An internal calreticulin fragment encompassing amino acids 120-180 also inhibited endothelial cell proliferation in vitro and angiogenesis in vivo comparably with calreticulin and vasostatin. These results suggest that the antiangiogenic activities of vasostatin reside in a domain that is accessible from the full-length calreticulin molecule and localize to calreticulin N-terminal amino acids 120-180. Thus, calreticulin and calreticulin fragments are inhibitors of angiogenesis that directly target endothelial cells, inhibit angiogenesis, and suppress tumor growth. This information may be critical in designing targeted inhibitors of pathological angiogenesis that underlies cancer and other diseases.


Sign in / Sign up

Export Citation Format

Share Document