Friction and Mixed Lubrication in Soft Layer Contacts

Author(s):  
L. Caravia ◽  
D. Dowson ◽  
J. Fisher ◽  
P.H. Corkhill ◽  
B.J. Tighe
Keyword(s):  
Friction ◽  
2021 ◽  
Author(s):  
Zongzheng Wang ◽  
Wei Pu ◽  
Xin Pei ◽  
Wei Cao

AbstractExisting studies primarily focus on stiffness and damping under full-film lubrication or dry contact conditions. However, most lubricated transmission components operate in the mixed lubrication region, indicating that both the asperity contact and film lubrication exist on the rubbing surfaces. Herein, a novel method is proposed to evaluate the time-varying contact stiffness and damping of spiral bevel gears under transient mixed lubrication conditions. This method is sufficiently robust for addressing any mixed lubrication state regardless of the severity of the asperity contact. Based on this method, the transient mixed contact stiffness and damping of spiral bevel gears are investigated systematically. The results show a significant difference between the transient mixed contact stiffness and damping and the results from Hertz (dry) contact. In addition, the roughness significantly changes the contact stiffness and damping, indicating the importance of film lubrication and asperity contact. The transient mixed contact stiffness and damping change significantly along the meshing path from an engaging-in to an engaging-out point, and both of them are affected by the applied torque and rotational speed. In addition, the middle contact path is recommended because of its comprehensive high stiffness and damping, which maintained the stability of spiral bevel gear transmission.


2021 ◽  
Vol 11 (11) ◽  
pp. 5155
Author(s):  
Liu Jian ◽  
Gyung-Min Choi

Acoustic oscillation provides useful information regarding the interfacial coupling between metal transducer layers and substrate materials. The interfacial coupling can be significantly reduced by a mechanically soft layer between the transducer and substrate. However, preserving a thin, soft layer at the interface during fabrication is often challenging. In this study, we demonstrate that an amorphous CoB alloy on top of a sapphire substrate can substantially amplify acoustic oscillations. By analyzing the attenuation of acoustic oscillations, we show that a thin, soft layer with a thickness of >2 ± 1 Å exists at the interface. The intermediate layer at the interface is further verified by investigating heat transport. By analyzing the slow decrease of the temperature of the transducer layer, we determine a thermal conductance of 35 ± 5 MW m−2 K−1 at the transducer/substrate interface. This low value supports the existence of a thin, soft layer at the interface. Our results demonstrate that an amorphous metal with B alloying effectively preserves the soft nature at the interface and detects the acoustic propagation and heat transport across it.


2019 ◽  
Vol 132 ◽  
pp. 265-274 ◽  
Author(s):  
Abdullah Azam ◽  
Ali Ghanbarzadeh ◽  
Anne Neville ◽  
Ardian Morina ◽  
Mark C.T. Wilson

1997 ◽  
Vol 40 (4) ◽  
pp. 647-657 ◽  
Author(s):  
Bo Ruan ◽  
Richard F. Salant ◽  
Itzhak Green
Keyword(s):  

1974 ◽  
Vol 11 (1) ◽  
pp. 182-201 ◽  
Author(s):  
René Marche ◽  
Robert Chapuis

The horizontal displacements measured at the toe of eight embankments are analyzed as a function of the factor of safety. The embankments are built on layers of soft clay. Only the undrained stage is studied.When the factor of safety of the embankments is higher than about 1.4, the horizontal displacements on the ground surface, at the toe of the embankment seem to follow an elastic law which is highly dependent on the ratio of the thickness of the soft layer to the width of the embankment. When the factor of safety is lower than about 1.4, the horizontal displacements do not follow an elastic law, they increase considerably. Consequently, it is suggested that the horizontal displacements be precisely measured at the toe of embankments during construction. These measurements are simple and sensitive to the approach of failure, they can be efficiently used to control the stability of embankments. This study also gives some information concerning the variation of horizontal displacements versus depth.


Sign in / Sign up

Export Citation Format

Share Document