1110 Differentiation of neuronal cells and expression of SP120, a nuclear scaffold protein

1997 ◽  
Vol 28 ◽  
pp. S138
Author(s):  
Akira Tokunaga ◽  
Kimiko Tsutsui ◽  
Masahiko Watanabe ◽  
Ken Tsutsui ◽  
Yukihide Maeda
2009 ◽  
Vol 390 (8) ◽  
Author(s):  
Jemima Barrowman ◽  
Susan Michaelis

Abstract ZMPSTE24 is an integral membrane zinc metalloprotease originally discovered in yeast as an enzyme (called Ste24p) required for maturation of the mating pheromone a-factor. Surprisingly, ZMPSTE24 has recently emerged as a key protease involved in human progeroid disorders. ZMPSTE24 has only one identified mammalian substrate, the precursor of the nuclear scaffold protein lamin A. ZMPSTE24 performs a critical endoproteolytic cleavage step that removes the hydrophobic farnesyl-modified tail of prelamin A. Failure to do so has drastic consequences for human health and longevity. Here, we discuss the discovery of the yeast and mammalian ZMPSTE24 orthologs and review the unexpected connection between ZMPSTE24 and premature aging.


2011 ◽  
Vol 124 (3) ◽  
pp. 394-404 ◽  
Author(s):  
N. Ma ◽  
S. Matsunaga ◽  
A. Morimoto ◽  
G. Sakashita ◽  
T. Urano ◽  
...  

2004 ◽  
Vol 24 (13) ◽  
pp. 5863-5874 ◽  
Author(s):  
Aleyde Van Eynde ◽  
Mieke Nuytten ◽  
Mieke Dewerchin ◽  
Luc Schoonjans ◽  
Stefaan Keppens ◽  
...  

ABSTRACT NIPP1 (nuclear inhibitor of protein phosphatase 1) is a ubiquitously expressed nuclear scaffold protein that has been implicated in both transcription and RNA processing. Among its protein ligands are a protein kinase, a protein phosphatase, two splicing factors, and a transcriptional regulator, and the binding of these proteins to NIPP1 is tightly regulated by phosphorylation. To study the function of NIPP1 in vivo, we have used homologous recombination to generate mice that are deficient in NIPP1. NIPP1−/+ mice developed normally. However, NIPP1−/− embryos showed severely retarded growth at embryonic day 6.5 (E6.5) and were resorbed by E8.5. This early embryonic lethality was not associated with increased apoptosis but correlated with impaired cell proliferation. Blastocyst outgrowth experiments and the RNA interference-mediated knockdown of NIPP1 in cultured cells also revealed an essential role for NIPP1 in cell proliferation. In further agreement with this function, no viable NIPP1−/− cell lines were obtained by derivation of embryonic stem (ES) cells from blastocysts of NIPP1−/+ intercrosses or by forced homogenotization of heterozygous ES cells at high concentrations of Geneticin. We conclude that NIPP1 is indispensable for early embryonic development and cell proliferation.


Author(s):  
Yasuhide Hibino ◽  
Tatsuhiro Usui ◽  
Yasuhiro Morita ◽  
Noriko Hirose ◽  
Mari Okazaki ◽  
...  

2014 ◽  
Vol 84 (3-4) ◽  
pp. 0140-0151 ◽  
Author(s):  
Thilaga Rati Selvaraju ◽  
Huzwah Khaza’ai ◽  
Sharmili Vidyadaran ◽  
Mohd Sokhini Abd Mutalib ◽  
Vasudevan Ramachandran ◽  
...  

Glutamate is the major mediator of excitatory signals in the mammalian central nervous system. Extreme amounts of glutamate in the extracellular spaces can lead to numerous neurodegenerative diseases. We aimed to clarify the potential of the following vitamin E isomers, tocotrienol-rich fraction (TRF) and α-tocopherol (α-TCP), as potent neuroprotective agents against glutamate-induced injury in neuronal SK-N-SH cells. Cells were treated before and after glutamate injury (pre- and post-treatment, respectively) with 100 - 300 ng/ml TRF/α-TCP. Exposure to 120 mM glutamate significantly reduced cell viability to 76 % and 79 % in the pre- and post-treatment studies, respectively; however, pre- and post-treatment with TRF/α-TCP attenuated the cytotoxic effect of glutamate. Compared to the positive control (glutamate-injured cells not treated with TRF/α-TCP), pre-treatment with 100, 200, and 300 ng/ml TRF significantly improved cell viability following glutamate injury to 95.2 %, 95.0 %, and 95.6 %, respectively (p < 0.05).The isomers not only conferred neuroprotection by enhancing mitochondrial activity and depleting free radical production, but also increased cell viability and recovery upon glutamate insult. Our results suggest that vitamin E has potent antioxidant potential for protecting against glutamate injury and recovering glutamate-injured neuronal cells. Our findings also indicate that both TRF and α-TCP could play key roles as anti-apoptotic agents with neuroprotective properties.


Sign in / Sign up

Export Citation Format

Share Document