Control of upright standing posture during low-frequency linear oscillation

1998 ◽  
Vol 30 (4) ◽  
pp. 333-342 ◽  
Author(s):  
O Kawakami ◽  
H Sudoh ◽  
Y Koike ◽  
S Mori ◽  
G Sobue ◽  
...  
2007 ◽  
Vol 40 ◽  
pp. S701
Author(s):  
Y. Yamazaki ◽  
T. Wang ◽  
M. Suzuki ◽  
T. Ohkuwa ◽  
H. Itoh

1976 ◽  
Vol 20 (20) ◽  
pp. 462-462
Author(s):  
Michael E. McCauley

The office of Naval Research/Human Factors Research (ONR/HFR) Motion Generator was designed with three degrees of freedom (heave, pitch, and roll) to simulate the motion of an air-sea craft in varying ocean conditions through Sea State 5. Recent upgrading of the device has provided the capability for simulating the motion of advanced design sea craft as well as certain aspects of vertical motion common to land, sea, and air vehicles. Since 1968, the simulator has been used for investigation of the following topics: (1) basic research to provide equations for the prediction of motion sickness incidence based on parameters of vertical linear oscillation, (2) crew performance during simulated motion of two types of proposed naval vessels, and (3) evaluation of the efficacy of antimotion sickness medications in alleviating the symptoms of motion sickness. This simulator provides the opportunity for future research on the effects of motion on physiological and psychological processes as well as task performance.


Author(s):  
Joo H. Kim ◽  
Yujiang Xiang ◽  
Rajankumar Bhatt ◽  
Jingzhou Yang ◽  
Hyun-Joon Chung ◽  
...  

An approach of generating dynamic biped motions of a human-like mechanism is proposed. An alternative and efficient formulation of the Zero-Moment Point for dynamic balance and the approximated ground reaction forces/moments are derived from the resultant reaction loads, which includes the gravity, the externally applied loads, and the inertia. The optimization problem is formulated to address the redundancy of the human task, where the general biped and task-specific constraints are imposed depending on the task requirements. The proposed method is fully predictive and generates physically feasible human-like motions from scratch; it does not require any input reference from motion capture or animation. The resulting generated motions demonstrate how a human-like mechanism reacts effectively to different external load conditions in performing a given task by showing realistic features of cause and effect. In addition, the energy-optimality of the upright standing posture is numerically verified among infinite feasible static biped postures without self contact. The proposed formulation is beneficial to motion planning, control, and physics-based simulation of humanoids and human models.


1981 ◽  
Vol 18 (4) ◽  
pp. 1-10
Author(s):  
YUTAKA TANIMURA ◽  
HIDEO NAKATA ◽  
TETSUU KUROKAWA ◽  
MASAO SEO ◽  
YASUMASA SATO

1987 ◽  
Vol 23 (4) ◽  
pp. 233-240 ◽  
Author(s):  
Yosaku WATANABE ◽  
Kiyoko YOKOYAMA ◽  
Kazuyuki TAKATA ◽  
Shinya TAKEUCHI

Sign in / Sign up

Export Citation Format

Share Document