Efficient ZMP Formulation and Effective Whole-Body Motion Generation for a Human-Like Mechanism

Author(s):  
Joo H. Kim ◽  
Yujiang Xiang ◽  
Rajankumar Bhatt ◽  
Jingzhou Yang ◽  
Hyun-Joon Chung ◽  
...  

An approach of generating dynamic biped motions of a human-like mechanism is proposed. An alternative and efficient formulation of the Zero-Moment Point for dynamic balance and the approximated ground reaction forces/moments are derived from the resultant reaction loads, which includes the gravity, the externally applied loads, and the inertia. The optimization problem is formulated to address the redundancy of the human task, where the general biped and task-specific constraints are imposed depending on the task requirements. The proposed method is fully predictive and generates physically feasible human-like motions from scratch; it does not require any input reference from motion capture or animation. The resulting generated motions demonstrate how a human-like mechanism reacts effectively to different external load conditions in performing a given task by showing realistic features of cause and effect. In addition, the energy-optimality of the upright standing posture is numerically verified among infinite feasible static biped postures without self contact. The proposed formulation is beneficial to motion planning, control, and physics-based simulation of humanoids and human models.

2005 ◽  
Vol 02 (04) ◽  
pp. 437-457 ◽  
Author(s):  
KOICHI NISHIWAKI ◽  
MAMORU KUGA ◽  
SATOSHI KAGAMI ◽  
MASAYUKI INABA ◽  
HIROCHIKA INOUE

This paper addresses a construction method of a system that realizes whole body reaching motion of humanoids. Humanoids have many redundant degrees of freedom for reaching, and even the base can be moved by making the robot step. Therefore, there are infinite final posture solutions for a final goal position of reaching, and there are also infinite solutions for reaching trajectories that realize a final reaching posture. It is, however, difficult to find an appropriate solution because of the constraint of dynamic balance, and relatively narrow movable range for each joint. We prepared basic postures heuristically, and a final reaching posture is generated by modifying one of them. Heuristics, such as the fact that kneeling down is suitable for reaching near the ground, can be implemented easily by using this method. Methods that compose the reaching system, that is, basic posture selection, modification of postures for generating final reaching postures, balance compensation, footstep planning to realize desired feet position, and generation and execution of whole body motion to final reaching postures are described. Reaching to manually set positions and picking up a bat at various postures using visual information are shown as experiments to show the performance of the system.


Author(s):  
Jingzhou James Yang ◽  
Yujiang Xiang ◽  
Joo Kim

This paper presents a methodology for determining the static joint torques of a digital human model considering balance for both standing and seating tasks. An alternative and efficient formulation of the Zero-Moment Point (ZMP) for static balance and the approximated (ground/seat) support reaction forces/moments are derived from the resultant reaction loads, which includes the gravity and externally applied loads. The proposed method can be used for both standing and seating tasks for assessing the stability/balance of the posture. The proposed formulation can be beneficial to physics-based simulation of humanoids and human models. Also, the calculated joint torques can be considered as an indicator to assess the risks of injuries when human models perform various tasks.


2019 ◽  
Vol 26 (4) ◽  
pp. 83-93
Author(s):  
Pouya Mohammadi ◽  
Enrico Mingo Hoffman ◽  
Niels Dehio ◽  
Milad S. Malekzadeh ◽  
Martin Giese ◽  
...  

2007 ◽  
Vol 04 (04) ◽  
pp. 717-751 ◽  
Author(s):  
PANDU RANGA VUNDAVILLI ◽  
SAMBIT KUMAR SAHU ◽  
DILIP KUMAR PRATIHAR

The present paper deals with dynamically balanced ascending and descending gait generations of a 7 DOF biped robot negotiating a staircase. During navigation, the foot of the swing leg is assumed to follow a trajectory, after ensuring its kinematic constraints. Dynamic balance margin of the gaits are calculated by using the concept of zero-moment point (ZMP). In the present work, an approach different from the well-known semi-inverse method has been developed for trunk motion generation, in which it is initially generated based on static balance and then checked for its dynamic balance. The joint torques are determined utilizing the Lagrange–Euler formulation, and the average power consumption at each joint is calculated. Moreover, variations of the dynamic balance margin are studied for both the ascending as well as descending gaits of the biped robot. Average dynamic balance margin and average power consumption in the ascending gait are found to be more than that of the descending gait. The effect of trunk mass on the dynamic balance margin and average power consumption for both the ascending and descending gaits are studied. The dynamic balance margin and average power consumption are found to decrease and increase, respectively with the increase in the trunk mass.


Sign in / Sign up

Export Citation Format

Share Document