Light and electron microscopical studies of PACAP (pituitary adenylate cyclase activating peptide) immunoreactive neurons in the enteric nervous system of rat small and large intestine

1998 ◽  
Vol 31 ◽  
pp. S252
Author(s):  
Masato Nagahama ◽  
Masako Tsuzuki ◽  
Tohru Mochizuki ◽  
Kazuaki Iguchi ◽  
Atsukazu Kuwahara
1992 ◽  
Vol 37 (3) ◽  
pp. 313
Author(s):  
Yoshinori Masuo ◽  
Tetsuya Ohtaki ◽  
Hirokazu Matsumoto ◽  
Yasushi Masuda ◽  
Nobuhiro Suzuki ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Parleen K Pandher ◽  
Ekaterina Filatov ◽  
Sarah L Gray

Abstract Pituitary adenylate cyclase-activating polypeptide (PACAP) is being studied to understand the endocrine regulation of energy balance and has been shown to be important in the regulation of the stress response (1,2). Specifically, PACAP has been shown to regulate thermogenesis, an energy burning process regulated by the sympathetic nervous system that contributes to achieving energy homeostasis in response to cold stress and overfeeding. PACAP is expressed in the sympathetic nervous system and is required at the adrenomedullary synapse to maintain epinephrine secretion from the adrenal medulla in response to physiological stress (3). Across the branches of the sympathetic nervous system, PACAP receptor expression is most well characterized in the superior cervical ganglia (SCG) (4). However, a detailed characterization of PACAP and its receptors has not been performed in ganglia whose postganglionic fibres innervate adipose tissues (stellate and celiac ganglia) in response to thermogenic stress. We hypothesized that PACAP is produced by preganglionic neurons innervating the stellate and celiac ganglia, and act on PACAP receptors expressed on the post-ganglionic neurons, and this expression will be upregulated in response to chronic cold stress. Due to their small and amorphous shape, we have developed a protocol to reliably isolate the stellate and celiac ganglia and validate their identity through the presence of tyrosine hydroxylase mRNA, using adrenal and SCG samples as positive controls. PACAP receptor expression (VPAC1, VPAC2, PAC1) was examined in the ganglia utilizing real-time PCR, and PACAP protein was visualized in the ganglia of transgenic mice that express eGFP under the control of the PACAP promoter (PACAP-eGFP mice) (5). This research demonstrates the expression of PACAP receptors in ganglia whose postganglionic fibres innervate adipose tissue, enhancing our understanding of PACAP’s role in the SNS, and its contribution to the regulation of adaptive thermogenesis. References: (1) Gray et al., Pacap: Regulator of the stress response. In: Fink G, ed. Stress: Physiology, biochemistry, and pathology. 2019:279-291. (2) Mustafa, Adv Pharmacol. San Diego, Calif:445-457. (3) Eiden et al., Pflungers Arch. 2018 Jan;470(1):79-88. (4) Braas et al., J Biol Chem. 1999 Sep 24;274(39):27702-27710. (5) Condro et al., J Comp Neurol. 2016 Dec 15; 524(18):3827-3848.


2000 ◽  
Vol 48 (3) ◽  
pp. 407-413 ◽  
Author(s):  
Anthony Capetandes ◽  
Jerry Di Salvo ◽  
John J. Ronan ◽  
Kenneth A. Thomas

Acidic fibroblast growth factor (aFGF) is a heparin binding protein that displays pleiotropic activity. The purpose of this study was to document the presence of the translated aFGF product, its mRNA, and its location in the colon. mRNA was extracted from bovine large intestine and reverse transcribed to cDNA. Nested-primer PCR was used to determine the presence of mRNA using primers homologous to the previously published bovine aFGF cDNA. Purification of translated aFGF was performed using an established HPLC protocol. Western blot analysis of the HPLC fractions was performed using two epitopeindependent antibodies against aFGF. Immunohistochemistry employed these antibodies to determine the locus of aFGF expression. The nested-primer PCR product of predicted size was homologous to the published bovine aFGF mRNA sequence, as determined by DNA sequencing. Intestinal aFGF had a mass similar to bovine aFGF isolated from other tissues, and immunocrossreacted with two peptide-based, epitope-independent anti-aFGF antisera on Western blotting. Immunohistochemical analysis of large intestine using these two independent antisera localized aFGF within the myenteric plexus. These data demonstrate that aFGF is present within the myenteric plexus of the enteric nervous system.


Sign in / Sign up

Export Citation Format

Share Document