Induction of blood–brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors

1999 ◽  
Vol 35 (2) ◽  
pp. 155-164 ◽  
Author(s):  
Kazuya Sobue ◽  
Naoki Yamamoto ◽  
Kazuhiro Yoneda ◽  
Mark E Hodgson ◽  
Kyoko Yamashiro ◽  
...  
PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e48428 ◽  
Author(s):  
Barbara Deracinois ◽  
Sophie Duban-Deweer ◽  
Gwënaël Pottiez ◽  
Roméo Cecchelli ◽  
Yannis Karamanos ◽  
...  

2013 ◽  
Vol 169 (7) ◽  
pp. 1561-1573 ◽  
Author(s):  
P Hülper ◽  
S Veszelka ◽  
F R Walter ◽  
H Wolburg ◽  
P Fallier-Becker ◽  
...  

2007 ◽  
Vol 1159 ◽  
pp. 67-76 ◽  
Author(s):  
Joseph C. Lim ◽  
Adam J. Wolpaw ◽  
Maeve A. Caldwell ◽  
Stephen B. Hladky ◽  
Margery A. Barrand

1996 ◽  
Vol 270 (4) ◽  
pp. H1149-H1158 ◽  
Author(s):  
L. Descamps ◽  
M. P. Dehouck ◽  
G. Torpier ◽  
R. Cecchelli

A cell culture model of the blood-brain barrier consisting of a coculture of bovine brain capillary endothelial cells (BBCECs) and astrocytes has been used to examine the mechanism of iron transport to the brain. Binding experiments showed that BBCECs express 35,000 high-affinity (concn at 50% receptor saturation = 11.3 +/- 2.1 nM) transferin (Tf) receptors per cell. In contrast to apo-transferrin (apoTf) we observed a specific transport of holo-transferrin (holoTf) across BBCECs. This transport was inhibited completely at low temperature. Moreover, the anti-Tf receptor antibody (OX-26) competitively inhibited holoTf uptake by BBCECs. Pulse-chase experiments demonstrated that only 10% of Tf was recycled to the luminal side of the cells, whereas the majority of Tf was transcytosed to the abluminal side; double-labeling experiments clearly demonstrated that iron crosses BBCECs bound to Tf. No intraendothelial degradation of Tf was observed, suggesting that the intraendothelial pathway through BBCECs bypasses the lysosomal compartment. These results clearly show that the iron-Tf complex is transcytosed across brain capillary endothelial cells by a receptor-mediated pathway without any degradation.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1484
Author(s):  
Daisuke Watanabe ◽  
Shinsuke Nakagawa ◽  
Yoichi Morofuji ◽  
Andrea E. Tóth ◽  
Monika Vastag ◽  
...  

Culture models of the blood-brain barrier (BBB) are important research tools. Their role in the preclinical phase of drug development to estimate the permeability for potential neuropharmaceuticals is especially relevant. Since species differences in BBB transport systems exist, primate models are considered as predictive for drug transport to brain in humans. Based on our previous expertise we have developed and characterized a non-human primate co-culture BBB model using primary cultures of monkey brain endothelial cells, rat brain pericytes, and rat astrocytes. Monkey brain endothelial cells in the presence of both pericytes and astrocytes (EPA model) expressed enhanced barrier properties and increased levels of tight junction proteins occludin, claudin-5, and ZO-1. Co-culture conditions also elevated the expression of key BBB influx and efflux transporters, including glucose transporter-1, MFSD2A, ABCB1, and ABCG2. The correlation between the endothelial permeability coefficients of 10 well known drugs was higher (R2 = 0.8788) when the monkey and rat BBB culture models were compared than when the monkey culture model was compared to mouse in vivo data (R2 = 0.6619), hinting at transporter differences. The applicability of the new non-human primate model in drug discovery has been proven in several studies.


1994 ◽  
Vol 107 (5) ◽  
pp. 1347-1357 ◽  
Author(s):  
H. Wolburg ◽  
J. Neuhaus ◽  
U. Kniesel ◽  
B. Krauss ◽  
E.M. Schmid ◽  
...  

Tight junctions between endothelial cells of brain capillaries are the most important structural elements of the blood-brain barrier. Cultured brain endothelial cells are known to loose tight junction-dependent blood-brain barrier characteristics such as macromolecular impermeability and high electrical resistance. We have directly analyzed the structure and function of tight junctions in primary cultures of bovine brain endothelial cells using quantitative freeze-fracture electron microscopy, and ion and inulin permeability. The complexity of tight junctions, defined as the number of branch points per unit length of tight junctional strands, decreased 5 hours after culture but thereafter remained almost constant. In contrast, the association of tight junction particles with the cytoplasmic leaflet of the endothelial membrane bilayer (P-face) decreased continuously with a major drop between 16 hours and 24 hours. The complexity of tight junctions could be increased by elevation of intracellular cAMP levels while phorbol esters had the opposite effect. On the other hand, the P-face association of tight junction particles was enhanced by elevation of cAMP levels and by coculture of endothelial cells with astrocytes or exposure to astrocyte-conditioned medium. The latter effect on P-face association was induced by astrocytes but not fibroblasts. Elevation of cAMP levels together with astrocyte-conditioned medium synergistically increased transendothelial electrical resistance and decreased inulin permeability of primary cultures, thus confirming the effects on tight junction structure and barrier function. P-face association of tight junction particles in brain endothelial cells may therefore be a critical feature of blood-brain barrier function that can be specifically modulated by astrocytes and cAMP levels. Our results suggest an important functional role for the cytoplasmic anchorage of tight junction particles for brain endothelial barrier function in particular and probably paracellular permeability in general.


2019 ◽  
Vol 5 (3) ◽  
pp. eaau7375 ◽  
Author(s):  
Matthew J. Stebbins ◽  
Benjamin D. Gastfriend ◽  
Scott G. Canfield ◽  
Ming-Song Lee ◽  
Drew Richards ◽  
...  

Brain pericytes play important roles in the formation and maintenance of the neurovascular unit (NVU), and their dysfunction has been implicated in central nervous system disorders. While human pluripotent stem cells (hPSCs) have been used to model other NVU cell types, including brain microvascular endothelial cells (BMECs), astrocytes, and neurons, hPSC-derived brain pericyte–like cells have not been integrated into these models. In this study, we generated neural crest stem cells (NCSCs), the embryonic precursor to forebrain pericytes, from hPSCs and subsequently differentiated NCSCs to brain pericyte–like cells. These cells closely resembled primary human brain pericytes and self-assembled with endothelial cells. The brain pericyte–like cells induced blood-brain barrier properties in BMECs, including barrier enhancement and reduced transcytosis. Last, brain pericyte–like cells were incorporated with iPSC-derived BMECs, astrocytes, and neurons to form an isogenic human model that should prove useful for the study of the NVU.


Sign in / Sign up

Export Citation Format

Share Document