Topological analysis of the spatial distribution of plant species richness across the city of Rome (Italy) with the echelon approach

2001 ◽  
Vol 57 (2) ◽  
pp. 69-76 ◽  
Author(s):  
Carlo Ricotta ◽  
Laura Celesti Grapow ◽  
Giancarlo Avena ◽  
Carlo Blasi
PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244452
Author(s):  
Hassanali Mollashahi ◽  
Magdalena Szymura ◽  
Tomasz H. Szymura

Urban grasslands are usually managed as short-cut lawns and have limited biodiversity. Urban grasslands with low-intensity management are species rich and can perform numerous ecosystem services, but they are not accepted by citizens everywhere. Further, increasing and/or maintaining a relatively high level of plant species richness in an urban environment is limited by restricted plant dispersal. In this study, we examined the connectivity of urban grasslands and prioritized the grassland patches with regard to their role in connectivity in an urban landscape. We used high-resolution data from a land use system to map grassland patches in Wrocław city, Silesia, southwest Poland, Central Europe, and applied a graph theory approach to assess their connectivity and prioritization. We next constructed a model for several dispersal distance thresholds (2, 20, 44, 100, and 1000 m), reflecting plants with differing dispersal potential. Our results revealed low connectivity of urban grassland patches, especially for plants with low dispersal ability (2–20 m). The priority of patches was correlated with their area for all dispersal distance thresholds. Most of the large patches important to overall connectivity were located in urban peripheries, while in the city center, connectivity was more restricted and grassland area per capita was the lowest. The presence of a river created a corridor, allowing plants to migrate along watercourse, but it also created a barrier dividing the system. The results suggest that increasing the plant species richness in urban grasslands in the city center requires seed addition.


2020 ◽  
Vol 8 ◽  
Author(s):  
Alexandros Papanikolaou ◽  
Maria Panitsa

Lake Kastoria is one of the potentially “ancient” Balkan lakes that has a great environmental importance and ecological value, attracts high touristic interest and is under various anthropogenic pressures. It belongs to a Natura 2000 Special Protection Area and a Site of Community Interest. The city of Kastoria is located at the western part of the lake and just next to it, towards the centre of the lake, is a peninsula, a habitat island. In the framework of research concerning the flora of lake islands of Greece, one of the main objectives of the present study is to fill a gap concerning plant species richness of the habitat island within the protected Lake Kastoria, which is surrounded by the lake except for its north-western part where the border of the city of Kastoria is located. Floristic analysis of the habitat island of Lake Kastoria is in large measure accounted, concerning chorology with emphasis on Balkan endemics (8.7%), life forms, by hemicryptophytes (36.1%), therophytes (33.2%), phanerophytes (16.4%) and geophytes (10.9%) and, for habitats, by taxa preferring agricultural and ruderal ones (53.3%). Another objective is to compare its floristic composition to the one of the island within the protected urban Lake Pamvotis - one of the very few lake islands in Greece - focusing on the influence of urbanisation. The α- and β- diversity are measured in order to reveal floristic differences. Beta diversity partitioning in turnover and nestedness showed that the β-diversity is mostly expressed as compositional turnover. The role of the society in combination with long-term programmes for the study of plant species richness, functional diversity and patterns of species assemblages over time are necessary for the effective management and protection of protected areas, including lake insular areas.


Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 170
Author(s):  
Gladys N. Benitez ◽  
Glenn D. Aguilar ◽  
Dan Blanchon

The spatial distribution of corticolous lichens on the iconic New Zealand pōhutukawa (Metrosideros excelsa) tree was investigated from a survey of urban parks and forests across the city of Auckland in the North Island of New Zealand. Lichens were identified from ten randomly selected trees at 20 sampling sites, with 10 sites classified as coastal and another 10 as inland sites. Lichen data were correlated with distance from sea, distance from major roads, distance from native forests, mean tree DBH (diameter at breast height) and the seven-year average of measured NO2 over the area. A total of 33 lichen species were found with coastal sites harboring significantly higher average lichen species per tree as well as higher site species richness. We found mild hotspots in two sites for average lichen species per tree and another two separate sites for species richness, with all hotspots at the coast. A positive correlation between lichen species richness and DBH was found. Sites in coastal locations were more similar to each other in terms of lichen community composition than they were to adjacent inland sites and some species were only found at coastal sites. The average number of lichen species per tree was negatively correlated with distance from the coast, suggesting that the characteristic lichen flora found on pōhutukawa may be reliant on coastal microclimates. There were no correlations with distance from major roads, and a slight positive correlation between NO2 levels and average lichen species per tree.


Sign in / Sign up

Export Citation Format

Share Document