Serotonin receptor subtype gene expression in the hippocampus of aged rats following chronic amitriptyline treatment

1999 ◽  
Vol 70 (2) ◽  
pp. 282-287 ◽  
Author(s):  
Joyce L.W Yau ◽  
Tommy Olsson ◽  
June Noble ◽  
Jonathan R Seckl
2018 ◽  
Vol 285 (1885) ◽  
pp. 20180791 ◽  
Author(s):  
A. N. Tamvacakis ◽  
A. Senatore ◽  
P. S. Katz

The marine mollusc, Pleurobranchaea californica varies daily in whether it swims and this correlates with whether serotonin (5-HT) enhances the strength of synapses made by the swim central pattern generator neuron, A1/C2. Another species, Tritonia diomedea , reliably swims and does not vary in serotonergic neuromodulation. A third species, Hermissenda crassicornis , never produces this behaviour and lacks the neuromodulation. We found that expression of particular 5-HT receptor subtype (5-HTR) genes in single neurons correlates with swimming. Orthologues to seven 5-HTR genes were identified from whole-brain transcriptomes. We isolated individual A1/C2 neurons and sequenced their RNA or measured 5-HTR gene expression using absolute quantitative PCR. A1/C2 neurons isolated from Pleurobranchaea that produced a swim motor pattern just prior to isolation expressed 5-HT2a and 5-HT7 receptor genes, as did all Tritonia samples. These subtypes were absent from A1/C2 isolated from Pleurobranchaea that did not s wim on that day and from Hermissenda A1/C2 neurons. Expression of other receptors was not correlated with swimming. This suggests that these 5-HTRs may mediate the modulation of A1/C2 synaptic strength and play an important role in swimming. Furthermore, it suggests that regulation of receptor expression could underlie daily changes in behaviour as well as evolution of behaviour.


2005 ◽  
Vol 18 (2) ◽  
pp. 113
Author(s):  
Myung Ha Yoon ◽  
Hong Buem Bae ◽  
Jeong Il Choi ◽  
Seok Jae Kim ◽  
Chang Mo Kim ◽  
...  

2021 ◽  
Vol 22 (10) ◽  
pp. 5285
Author(s):  
Kazuhiro Mio ◽  
Shoko Fujimura ◽  
Masaki Ishihara ◽  
Masahiro Kuramochi ◽  
Hiroshi Sekiguchi ◽  
...  

Serotonin receptors play important roles in neuronal excitation, emotion, platelet aggregation, and vasoconstriction. The serotonin receptor subtype 2A (5-HT2AR) is a Gq-coupled GPCR, which activate phospholipase C. Although the structures and functions of 5-HT2ARs have been well studied, little has been known about their real-time dynamics. In this study, we analyzed the intramolecular motion of the 5-HT2AR in living cells using the diffracted X-ray tracking (DXT) technique. The DXT is a very precise single-molecular analytical technique, which tracks diffraction spots from the gold nanocrystals labeled on the protein surface. Trajectory analysis provides insight into protein dynamics. The 5-HT2ARs were transiently expressed in HEK 293 cells, and the gold nanocrystals were attached to the N-terminal introduced FLAG-tag via anti-FLAG antibodies. The motions were recorded with a frame rate of 100 μs per frame. A lifetime filtering technique demonstrated that the unliganded receptors contain high mobility population with clockwise twisting. This rotation was, however, abolished by either a full agonist α-methylserotonin or an inverse agonist ketanserin. Mutation analysis revealed that the “ionic lock” between the DRY motif in the third transmembrane segment and a negatively charged residue of the sixth transmembrane segment is essential for the torsional motion at the N-terminus of the receptor.


2000 ◽  
Vol 57 (1) ◽  
pp. 175-180 ◽  
Author(s):  
I. Hellgren ◽  
A. Mustafa, M. Riazi, I. Suliman, C. S

2001 ◽  
Vol 281 (3) ◽  
pp. G798-G808 ◽  
Author(s):  
H. Takahara ◽  
M. Fujimura ◽  
S. Taniguchi ◽  
N. Hayashi ◽  
T. Nakamura ◽  
...  

Few previous studies have discussed the changes in serotonin receptor activity in the small intestine of diabetic animals. Therefore, we examined serotonin content in duodenal tissue and dose-dependent effects of serotonin agonists and antagonists on the motor activity of ex vivo vascularly perfused duodenum of streptozotocin (STZ)-diabetic rats. Serotonin content was significantly increased in enterochromaffin cells but not altered in serotonin-containing neurons in STZ-diabetic rats. Motor activity assessed by frequency, amplitude, and percent motility index per 10 min of pressure waves was reduced in the duodenum of diabetic rats, and this reduction was reversed by insulin treatment. Serotonin dose dependently increased the motor activity in control rat duodenum but only a higher concentration of serotonin increased the motor activity in diabetic rats. The 5-hydroxytryptamine (5-HT) receptor subtype 4 (5-HT4) antagonist SB-204070 dose dependently reduced motor activity in both control and diabetic rats, whereas the 5-HT3receptor antagonist azasetron, even at a higher concentration, failed to affect motor activity in diabetic rat duodenum but dose dependently reduced motor activity in control rat duodenum. These results suggest that 5-HT3receptor activity was impaired but 5-HT4receptor activity was intact in STZ-diabetic rat duodenum. Such an impairment of 5-HT3receptor activity may induce the motility disturbance in the small intestine of diabetes mellitus.


2017 ◽  
Vol 2 (1) ◽  

Neonatal stress conditions like hypoglycemia cause brain damage by affecting various signaling pathways thereby causing long term effects on brain functions. A proper understanding of the signaling pathways affected by this stress will help to devise better neonatal care. The focus of the current study was to evaluate the effect of neonatal hypoglycemic insult on cerebellar metabotropic cholinergic receptor function in one month old rats. The receptor analysis of cholinergic muscarinic receptors were done by radioreceptor assays and gene expression was analysed using Real Time PCR. Neonatal hypoglycemia significantly reduced (p<0.001) the cerebellar muscarinic receptor density with a down regulation (p<0.001) of muscarinic M3 receptor subtype gene expression in one month old rats. Both muscarinic M1 and M2 receptor subtype expression were not significantly altered. The catabolic enzyme in acetyl choline metabolism- acetylcholine esterase – showed a significant (p<0.001) up regulation with no siginificant change in the anabolic enzyme – choline acetyl transferase, signifying a change in the turnover ratio. Targeting these pathways at different levels can be exploited to devise better treatment for neonatal stress management and also for diseases with impaired insulin secretion such as diabetes.


Author(s):  
Sabine Niebert ◽  
Gijsbert J. van Belle ◽  
Steffen Vogelgesang ◽  
Till Manzke ◽  
Marcus Niebert

Sign in / Sign up

Export Citation Format

Share Document