4 Inhibition of PARP activity by PJ34 sensitises NSCLC cells to cisplatin

Lung Cancer ◽  
2014 ◽  
Vol 83 ◽  
pp. S2
Author(s):  
M.P. Barr ◽  
R. Rausch ◽  
J. Thomale ◽  
D. Richard ◽  
S. Cuffe ◽  
...  
Keyword(s):  
2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hongbo Chen ◽  
Xiaobin Zeng ◽  
Chunmei Gao ◽  
Pinghong Ming ◽  
Jianping Zhang ◽  
...  
Keyword(s):  

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3333
Author(s):  
Jun Tang ◽  
Víctor Curull ◽  
Xuejie Wang ◽  
Coral Ampurdanés ◽  
Xavier Duran ◽  
...  

(1) Background: Lung cancer (LC) is a major leading cause of death worldwide. Poly (ADP-ribose) polymerase (PARP)-1 and PARP-2 are key players in cancer. We aimed to assess PARP-1 and PARP-2 expression and activity and DNA damage in tumors and non-tumor lungs from patients with/without chronic obstructive pulmonary disease (COPD). (2) Methods: Lung tumor and non-tumor specimens were obtained through video-assisted thoracoscopic surgery (VATS) in LC patients with/without underlying COPD (two groups of patients, n = 15/group). PARP-1 and PARP-2 expression (ELISA), PARP activity (PARP colorimetric assay kit) and DNA damage (immunohistochemistry) levels were identified in all samples. (3) Results: Both PARP-1 and PARP-2 expression levels were significantly lower in lung tumors (irrespective of COPD)compared to non-tumor specimens, while DNA damage and PARP activity levels significantly increased in lung tumors compared to non-tumor specimens only in LC-COPD patients. PARP-2 expression was positively correlated with smoking burden in LC-COPD patients. (4) Conclusions: In lung tumors of COPD patients, an overactivation of PARP enzyme was observed. A decline in PARP-1 and PARP-2 protein expression was seen in lung tumors irrespective of COPD. Other phenotypic features (airway obstruction) beyond cancer may account for the increase in PARP activity seen in the tumors of patients with underlying COPD.


2021 ◽  
Vol 411 ◽  
pp. 115362
Author(s):  
Sebastian Medina ◽  
Xixi Zhou ◽  
Fredine T. Lauer ◽  
Haikun Zhang ◽  
Ke Jian Liu ◽  
...  
Keyword(s):  

PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0181374 ◽  
Author(s):  
Ayse Sahaboglu ◽  
Alaa Sharif ◽  
Lili Feng ◽  
Enver Secer ◽  
Eberhart Zrenner ◽  
...  

2015 ◽  
Author(s):  
Shiv K. Gupta ◽  
Brett L. Carlson ◽  
Mark A. Schroeder ◽  
Katrina K. Bakken ◽  
Ann C. Tuma ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2907
Author(s):  
Pablo Iglesias ◽  
Marcos Seoane ◽  
Irene Golán ◽  
Isabel Castro-Piedras ◽  
Máximo Fraga ◽  
...  

In recent years, poly (ADP-ribose) polymerase (PARP) inhibitors have been evaluated for treating homologous recombination-deficient tumours, taking advantage of synthetic lethality. However, increasing evidence indicates that PARP1 exert several cellular functions unrelated with their role on DNA repair, including function as a co-activator of transcription through protein-protein interaction with E2F1. Since the RB/E2F1 pathway is among the most frequently mutated in many tumour types, we investigated whether the absence of PARP activity could counteract the consequences of E2F1 hyperactivation. Our results demonstrate that genetic ablation of Parp1 extends the survival of Rb-null embryos, while genetic inactivation of Parp1 results in reduced development of pRb-dependent tumours. Our results demonstrate that PARP1 plays a key role as a transcriptional co-activator of the transcription factor E2F1, an important component of the cell cycle regulation. Considering that most oncogenic processes are associated with cell cycle deregulation, the disruption of this PARP1-E2F1 interaction could provide a new therapeutic target of great interest and a wide spectrum of indications.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2110-2110
Author(s):  
Victoria Weston ◽  
Claire Baker ◽  
Belinda Austen ◽  
Malcolm Taylor ◽  
Paul Moss ◽  
...  

Abstract B-CLL is incurable and the development of resistance to standard chemotherapeutics remains an important problem. ATM mutations lead to chemo-resistance in a significant proportion of CLL patients and this is due to impairment in the activation of the DNA-damage induced ATM/p53 apoptotic pathway. Therefore, there is a requirement for novel treatments for ATM mutant CLL tumours, which induce cell death by mechanisms that are independent of this pathway. Breast cancer cells with homozygous BRCA1/2 mutations are deficient in the repair of DNA double strand break (DSB) by homologous recombination (HR). It has recently been shown that inhibition of PARP activity, which is required for repair of DNA single strand breaks (SSB), can lead to selective sensitisation of tumours harbouring BRCA1/2 mutations in replicating cells. The mechanism involves the continual progression of DNA SSBs into DSBs, which in the presence of defective HR, results in accumulation of DSBs and activation of cell death via mitotic catastrophe. ATM regulates the balance between the repair of DNA DSBs and the induction of the DNA DSB apoptotic pathway. Therefore, the phenotype of ATM mutant CLL cells includes a repair defect as well as an apoptotic defect. By analogy with the BRCA study, we investigated whether PARP inhibition can sensitise ATM mutant CLL tumours. We addressed the in vitro cytotoxicity of a similar PARP inhibitor (PARPi), AZD2281 produced by KuDOS, in 20 CLL tumours, including 10 ATM mutant and 10 ATM wild type. We analysed each of the CLL tumours in non-cycling and cycling states in culture. The aim was to mimic the CLL tumour populations in vivo, which are believed to consist of non-cycling peripheral blood tumour cells and cycling lymphoid tissue tumour cells. Given the mechanism of PARP activity, we predicted that its inhibition would preferentially be toxic in the cycling CLL population. In our experiments, CLL cycling was induced using a CD40L/IL4 support system and verified by incorporation of tritiated thymidine or BrdU. Consistent with our expectations, non-cycling CLL cells did not show significant cytotoxicity to increasing doses of AZD2281 (0.5–10μM). By comparison, in cycling CLLs there was increased sensitivity to AZD2281 at concentrations of 1.5μM or greater in ATM mutant compared to ATM wild type tumours. Furthermore, protein analysis revealed that treatment with AZD2281 did not induce the up regulation of p53 or the cleavage of caspases and that the killing in ATM mutant cells did not require induction of Atm/p53 dependent apoptosis. In non-cycling ATM mutant CLL cells, we also investigated whether pre-incubation with the AZD2281 could sensitize cells to DNA damaging chemotherapeutics. Interestingly, we found that 24 hours pre-treatment with AZD2281 rendered ATM mutant non-cycling cells sensitive to Fludarabine. We conclude that the PARP inhibitor AZD2281 is capable of targeting CLL cells with defective ATM function for cellular killing. Furthermore, our results indicate that inhibition of PARP is particularly important in the induction of cell death within proliferating ATM mutant CLL cells, which play a major role in tumour progression. Also, the addition of AZD2281 can sensitise non-cycling ATM mutant tumour cells to killing by Fludarabine. Our results suggest that this compound could be effective in the treatment of CLL patients with apoptotic resistant ATM mutant tumours.


2013 ◽  
Vol 449 (3) ◽  
pp. 623-630 ◽  
Author(s):  
Tiziana Guastafierro ◽  
Angela Catizone ◽  
Roberta Calabrese ◽  
Michele Zampieri ◽  
Oliviano Martella ◽  
...  

Ctcf (CCCTC-binding factor) directly induces Parp [poly(ADP-ribose) polymerase] 1 activity and its PARylation [poly(ADPribosyl)ation] in the absence of DNA damage. Ctcf, in turn, is a substrate for this post-synthetic modification and as such it is covalently and non-covalently modified by PARs (ADP-ribose polymers). Moreover, PARylation is able to protect certain DNA regions bound by Ctcf from DNA methylation. We recently reported that de novo methylation of Ctcf target sequences due to overexpression of Parg [poly(ADP-ribose)glycohydrolase] induces loss of Ctcf binding. Considering this, we investigate to what extent PARP activity is able to affect nuclear distribution of Ctcf in the present study. Notably, Ctcf lost its diffuse nuclear localization following PAR (ADP-ribose polymer) depletion and accumulated at the periphery of the nucleus where it was linked with nuclear pore complex proteins remaining external to the perinuclear Lamin B1 ring. We demonstrated that PAR depletion-dependent perinuclear localization of Ctcf was due to its blockage from entering the nucleus. Besides Ctcf nuclear delocalization, the outcome of PAR depletion led to changes in chromatin architecture. Immunofluorescence analyses indicated DNA redistribution, a generalized genomic hypermethylation and an increase of inactive compared with active chromatin marks in Parg-overexpressing or Ctcf-silenced cells. Together these results underline the importance of the cross-talk between Parp1 and Ctcf in the maintenance of nuclear organization.


2010 ◽  
Vol 29 (4-6) ◽  
pp. 471-475 ◽  
Author(s):  
B. Cerboni ◽  
A. Di Stefano ◽  
V. Micheli ◽  
G. Morozzi ◽  
G. Pompucci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document