Differential frost heave and sorted patterned ground: field measurements and a laboratory experiment

Geomorphology ◽  
2003 ◽  
Vol 52 (1-2) ◽  
pp. 73-85 ◽  
Author(s):  
Norikazu Matsuoka ◽  
Miwa Abe ◽  
Manabu Ijiri
2003 ◽  
Vol 49 (164) ◽  
pp. 69-80 ◽  
Author(s):  
Rorik A. Peterson ◽  
William B. Krantz

AbstractThe genesis of some types of patterned ground, including hummocks, frost boils and sorted stone circles, has been attributed to differential frost heave (DFH). However, a theoretical model that adequately describes DFH has yet to be developed and validated. In this paper, we present a mathematical model for the initiation of DFH, and discuss how variations in physical (i.e. soil/vegetation properties) and environmental (i.e. ground/air temperatures) properties affect its occurrence and length scale. Using the Fowler and Krantz multidimensional frost-heave equations, a linear stability analysis anda quasi-steady-state real-time analysis are performed. Results indicate that the following conditions positively affect the spontaneous initiation of DFH: silty soil, small Young’s modulus, small non-uniform surface heat transfer or cold uniform surface temperatures, and small freezing depths. The initiating mechanism for DFH is multidimensional heat transfer within the freezing soil. Numerical integration of the linear growth rates indicates that expression of surface patterns can become evident on the 10–100 year time-scale.


2011 ◽  
Vol 75 (2) ◽  
pp. 325-333 ◽  
Author(s):  
Rorik A. Peterson

AbstractA. L. Washburn famously proposed and reviewed 19 hypotheses for the origin of patterned ground in periglacial environments over 50 years ago (Washburn, 1956). Of these 19 mechanisms, only a few have been analyzed starting from a fundamental description of the physics to assess their potential contribution to the initiation of patterned ground. Here, differential frost heave (DFH) is investigated as the origin of non-sorted circles in periglacial landscapes. Model results indicating that DFH can spontaneously lead to patterned ground are compared to measurements of patterned ground in the Canadian Arctic Archipelago. The characteristic size of the predicted emerging pattern depends strongly on the maximum depth of freezing but is only weakly dependent on the soil composition. The predicted emerging patterns may also be dramatically different in size with a small change in active layer when a relatively thin (~ 10 cm) insulating snow covers the ground during freezing. The model predicted trends agree with field observations of pattern size and active layer depth at two distinct sites. Although two data points cannot conclusively indicate a trend, this correlation gives support for the possibility of determining some subsurface properties using remote sensing images of surface patterned ground.


Author(s):  
Yan Di ◽  
Jian Shuai ◽  
Lingzhen Kong ◽  
Xiayi Zhou

Frost heave must be considered in cases where pipelines are laid in permafrost in order to protect the pipelines from overstress and to maintain the safe operation. In this paper, a finite element model for stress/strain analysis in a pipeline subjected to differential frost heave was presented, in which the amount of frost heave is calculated using a segregation potential model and considering creep effects of the frozen soil. In addition, a computational method for the temperature field around a pipeline was proposed so that the frozen depth and temperature variation gradient could be obtained. Using the procedure proposed in this paper, stress/strain can be calculated according to the temperature on the surface of soil and in a pipeline. The result shows the characteristics of deformation and loading of a pipeline subjected to differential frost heave. In general, the methods and results in this paper can provide a reference for the design, construction and operation of pipelines in permafrost areas.


Author(s):  
Joe Zhou ◽  
Gordon Craig ◽  
Beez Hazen ◽  
James D. Hart

Long distance pipelines are actively pursued by the industry to transport natural gas from remote arctic regions to markets. A chilled gas pipeline is one of the options to minimize the environmental impact resulting from operation of such pipelines. When a chilled gas pipeline crosses discontinuous permafrost areas, differential frost heave can occur. The result is pipe being subjected to potentially high strains, primarily in the axial direction. Reliable prediction of strain demands is one of the key components for a strain-based design process and it is essential for both ensuring pipeline integrity and facilitating life-cycle cost optimization for the design and maintenance of pipelines. The prediction of strain demands resulting from frost heave of chilled gas pipelines involves three fundamental engineering analysis processes. They are gas hydraulic analysis, geothermal analysis and pipeline structural analysis. Not only are these three processes complex, they are also mutually interdependent. To reliably predict strain demands and fully capture the interactions among these processes, TransCanada Pipelines Ltd. (TransCanada) and its partners developed an integrated engineering model on the basis of three well established programs for the three individual engineering processes. This paper will briefly review the integrated model for strain demand prediction.


2020 ◽  
Vol 12 (12) ◽  
pp. 2018
Author(s):  
Malvina Silvestri ◽  
Enrica Marotta ◽  
Maria Fabrizia Buongiorno ◽  
Gala Avvisati ◽  
Pasquale Belviso ◽  
...  

The purpose of this study is to analyze the surface temperature and the distribution of thermal signatures on Tuscany’s geothermal districts using data obtained through three separate surveys via satellite and an unmanned aerial vehicle (UAV). The analysis considers the highest available spatial resolution ranging from hundreds of meters per pixel of the satellite thermal images and the tenths/hundreds of centimeters per pixel of the thermal images acquired by the UAV. The surface temperature maps obtained by satellite data acquired at suitable spatial resolution and the thermal measurements obtained by the thermal camera installed on the UAV were orthorectified and geocoded. This allowed, for example, following the evolution of thermal anomalies, which may represent a modification of the current state of the geothermal field and a possible hazard for both the population and industrial assets. Here, we show the results obtained in three field campaigns during which the simultaneous acquisition of Landsat 8 satellite and UAV (FlyBit octocopter, IDS, Rome, Italy) thermal data were analyzed. By removing the atmosphere contribution from Landsat 8 data, we have produced three surface temperature maps that are compared with the ground field measurements and the surface temperature maps elaborated by FLIR VUE PRO-R on the UAV.


2017 ◽  
Vol 54 (9) ◽  
pp. 1272-1283 ◽  
Author(s):  
Mason Ghafghazi ◽  
Jason T. DeJong ◽  
Daniel W. Wilson

The Becker penetration test (BPT) is the only tool available for characterizing gravelly soils with a probe diameter that is meaningfully larger than that of the standard penetration test (SPT) and the cone penetration test (CPT). Measurements on the BPT system during operation provide information on how penetration is controlled by the driving energy and frictional resistance along the shaft. This has led to development of the instrumented Becker penetration test (iBPT), which uses measurements of force and acceleration obtained directly behind the drill string tip to compute the residual energy and displacement induced by each hammer blow. These measurements are used to produce a continuous profile of normalized blow counts that are repeatable, unaffected by varying driving energy or accumulated shaft resistance, and can be used to directly estimate equivalent SPT N60 blow count values as per DeJong et al. and Ghafghazi et al. in their 2017 studies. The measurements obtained also enabled evaluation of previously developed methods by Harder and Seed in 1986 and Sy and Campanella in 1994. This evaluation revealed that the hammer energy normalization approaches employed by Sy and Campanella and especially Harder and Seed are not robust across the broad range of conditions observed. The predicted equivalent SPT N60 values by Harder and Seed and Sy and Campanella methods are influenced by the shaft resistance magnitude as both methods are based on above-ground field measurements. Estimated N60 values produced by the two methods can be inconsistent with each other, with N60 values produced by the iBPT, and with measured N60 values obtained directly from SPT (where values are obtained in the absence of gravel).


Sign in / Sign up

Export Citation Format

Share Document