Interleukin-1β Modulates in Vitro Mucous Glycoprotein Secretion and Proliferation of the Middle Ear Epithelial Cells

1995 ◽  
Vol 113 (2) ◽  
pp. P122-P122
Author(s):  
Jizhen Lin ◽  
Youngki Kim ◽  
Chris Lees ◽  
Steven K. Juhn
1996 ◽  
Vol 105 (11) ◽  
pp. 916-921 ◽  
Author(s):  
Jizhen Lin ◽  
Youngki Kim ◽  
Frank Ondrey ◽  
Chris Lees ◽  
Steven K. Juhn

Lipoxygenase is an enzyme that metabolizes arachidonic acid down to leukotrienes. Recent studies have shown that the enzyme is implicated in mucous glycoprotein (MGP) secretion stimulated by inflammatory mediators in the airways, suggesting its possible role in secretion of MGP from middle ear epithelial cells. To investigate a correlation between MGP secretion and the arachidonic acid metabolites, we examined the effects of nordihydroguaretic acid (NDGA, both a cyclooxygenase and lipoxygenase inhibitor), low-dose indomethacin (an inhibitor of cyclooxygenase), and A63162 (an inhibitor of lipoxygenase) on MGP secretion in cultured chinchilla middle ear epithelial cells. It was found that lipoxygenase inhibition led to reduction of MGP secretion from cultured chinchilla middle ear epithelial cells, while cyclooxygenase inhibition did not. Both cyclooxygenase and lipoxygenase inhibition resulted in profound blockage of MGP secretion in baseline and platelet activating factor-stimulated MGP secretion. It was concluded, therefore, that MGP secretion was linked to arachidonic acid metabolites, especially lipoxygenase products.


2019 ◽  
Vol 44 (4) ◽  
pp. 465-478 ◽  
Author(s):  
Zhiming Ye ◽  
Li Zhang ◽  
Ruizhao Li ◽  
Wei Dong ◽  
Shuangxin Liu ◽  
...  

Background/Aims: Acute kidney injury (AKI) is a serious complication of sepsis and has a high morbidity and mortality rate. Caspase-11 induces pyroptosis, a form of programmed cell death that plays a critical role in endotoxic shock, but its role in tubular epithelial cell death and whether it contributes to sepsis-associated AKI remains unknown. Methods: The caspase-11–/– mouse received an intraperitoneal injection of lipopolysaccharide (LPS, 40 mg/kg body weight). Caspase-11–/– renal tubular epithelial cells (RTECs) form C57BL caspase-11–/– mice were treated with LPS in vitro. The IL-1β ELISA kit and Scr assay kit were used to measure the level of interleukin-1β and serum creatinine. Annexin V-FITC assay and TUNEL staining assay were used to detect the cell death in different groups in vitro and in vivo. Western blot was performed to analyze the protein expression of caspase-11 and Gsdmdc1. Results: LPS-induced sepsis results in lytic death of RTECs, accompanied by increased expression of the pyroptosis-related proteins caspase-11 and Gsdmd. However, the increase in pyroptosis-related protein expression induced by LPS was attenuated with caspase-11 knockout, both in vitro and in vivo. Furthermore, when challenged with lethal doses of systemic LPS, pathologic abnormalities in renal structure, increased serum and kidney interleukin-1β, increased serum creatinine, and animal death were observed in wild-type mice but prevented in caspase-11–/– mice. Conclusions: Caspase-11-induced pyroptosis of RTECs is a key event during septic AKI, and targeting of caspase-11 in RTECs may serve as a novel therapeutic target in septic AKI.


1997 ◽  
Vol 117 (3) ◽  
pp. 406-413 ◽  
Author(s):  
Jizhen Lin ◽  
Steven K. Juhn ◽  
George L. Adams ◽  
G. Scott Giebink ◽  
Youngki Kim

Sign in / Sign up

Export Citation Format

Share Document