Neuroprotective effect of dietary restriction involves a stress response and increased expression of neurotrophic factors

2000 ◽  
Vol 21 ◽  
pp. 45
Author(s):  
J. Lee ◽  
W. Duan ◽  
J.P. Herman ◽  
M.P. Mattson
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Natalie Baruch-Eliyahu ◽  
Vladislav Rud ◽  
Alex Braiman ◽  
Esther Priel

AbstractThe telomerase reverse transcriptase protein, TERT, is expressed in the adult brain and its exogenic expression protects neurons from oxidative stress and from the cytotoxicity of amyloid beta (Aβ). We previously showed that telomerase increasing compounds (AGS) protected neurons from oxidative stress. Therefore, we suggest that increasing TERT by AGS may protect neurons from the Aβ-induced neurotoxicity by influencing genes and factors that participate in neuronal survival and plasticity. Here we used a primary hippocampal cell culture exposed to aggregated Aβ and hippocampi from adult mice. AGS treatment transiently increased TERT gene expression in hippocampal primary cell cultures in the presence or absence of Aβ and protected neurons from Aβ induced neuronal degradation. An increase in the expression of Growth associated protein 43 (GAP43), and Feminizing locus on X-3 genes (NeuN), in the presence or absence of Aβ, and Synaptophysin (SYP) in the presence of Aβ was observed. GAP43, NeuN, SYP, Neurotrophic factors (NGF, BDNF), beta-catenin and cyclin-D1 expression were increased in the hippocampus of AGS treated mice. This data suggests that increasing TERT by pharmaceutical compounds partially exerts its neuroprotective effect by enhancing the expression of neurotrophic factors and neuronal plasticity genes in a mechanism that involved Wnt/beta-catenin pathway.


2018 ◽  
Vol 3 (3) ◽  
pp. 133-139
Author(s):  
Sara Milanizadeh ◽  
Abbas Aliaghaei ◽  
Mohammad Reza Bigdeli

Aim: Introducing neurotrophic factors are among several new approaches to enhance neural resistance to the ischemic condition. Cancer cells such as 4T1 are one of the strongest cells with high viability in transplanted area. 4T1 cells are invasive breast carcinoma cells derived from spontaneous tumors in mouse Balb/C which their pathologic effects are limited to Balb/C species. Sertoli cells (SCs) can be a proper candidate for increasing transplanted cells survival. These cells not only suppress the immune system, but also secret growth factors. The aim of this study is to evaluate the possible neuroprotective effect of 4T1 transplantation on middle cerebral artery occlusion (MCAO) rat model alone and with SCs co-transplanted. Material and Methods: Rats were divided into five experimental groups: control, sham, SCs, 4T1 and 4T1+SCs treated groups. Cells were transplanted into the right striatum by using stereotaxic surgery. Ischemic surgery was done after five days. 24 hours after reperfusion, neurological severity score, infarct volume, brain edema, and blood-brain barrier permeability were assessed in different areas of the brain including cortex, striatum and piriform cortex-amygdala (Pir-Amy). Results: This study demonstrates that SCs and 4T1 transplantation ameliorate neurological deficits and reduce infarct volume, brain edema and blood-brain barrier permeability compared to the control group. Conclusion: Introducing cancer cell transplantation as a source of neurotrophic factors to enhance neural survival can be a new approach in cell therapy.


Aging Cell ◽  
2006 ◽  
Vol 5 (3) ◽  
pp. 247-257 ◽  
Author(s):  
C. Thrasivoulou ◽  
V. Soubeyre ◽  
H. Ridha ◽  
D. Giuliani ◽  
C. Giaroni ◽  
...  

2008 ◽  
Vol 24 (4) ◽  
pp. 245-251
Author(s):  
Hee-Ra Park ◽  
Mi-Kyung Park ◽  
Hyung-Sik Kim ◽  
Jae-Won Lee

2020 ◽  
pp. 003693302096154
Author(s):  
Libo Chuan ◽  
Lei Zhang ◽  
Hao Fu ◽  
Ying Yang ◽  
Quanyu Wang ◽  
...  

Background and aims The neurological damage caused by cardiac arrest (CA) can seriously affect quality of life. We investigated the effect of metformin pretreatment on brain injury and survival in a rat CA/cardiopulmonary resuscitation (CPR) model. Methods and results After 14 days of pretreatment with metformin, rats underwent 9 minutes of asphyxia CA/CPR. Survival was evaluated 7 days after restoration of spontaneous circulation; neurological deficit scale (NDS) score was evaluated at days 1, 3, and 7. Proteins related to the endoplasmic reticulum (ER) stress response and autophagy were measured using immunoblotting. Seven-day survival was significantly improved and NDS score was significantly improved in rats pretreated with metformin. Metformin enhanced AMPK-induced autophagy activation. AMPK and autophagy inhibitors removed the metformin neuroprotective effect. Although metformin inhibited the ER stress response, its inhibitory effect was weaker than 4-PBA. Conclusion In a CA/CPR rat model, 14-day pretreatment with metformin has a neuroprotective effect. This effect is closely related to the activation of AMPK-induced autophagy and inhibition of the ER stress response. Long-term use of metformin can reduce brain damage following CA/CPR.


Sign in / Sign up

Export Citation Format

Share Document